EdBoy2202 commited on
Commit
9b968be
·
verified ·
1 Parent(s): 4192639

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ CTP_Model1.csv filter=lfs diff=lfs merge=lfs -text
CTP_Model1.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d0c75d2cab0e3110336d7081fb7ed4ad97a25185c7ed408bd1bc1e027649ca
3
+ size 59137111
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- title: Car Prediction
3
- emoji:
4
- colorFrom: indigo
5
  colorTo: pink
6
  sdk: streamlit
7
  sdk_version: 1.40.2
 
1
  ---
2
+ title: TheGuide
3
+ emoji: 👁
4
+ colorFrom: pink
5
  colorTo: pink
6
  sdk: streamlit
7
  sdk_version: 1.40.2
app.py ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ import matplotlib.pyplot as plt
6
+ import os
7
+ import openai
8
+ from sklearn.preprocessing import LabelEncoder
9
+ import requests # Add this at the top with other imports
10
+ from io import BytesIO
11
+ import gdown
12
+
13
+ # --- Set page configuration ---
14
+ st.set_page_config(
15
+ page_title="The Guide",
16
+ page_icon="🚗",
17
+ layout="wide",
18
+ initial_sidebar_state="expanded"
19
+ )
20
+
21
+ # --- Custom CSS for better styling ---
22
+
23
+ st.markdown("""
24
+ <style>
25
+ /* Base styles */
26
+ * {
27
+ color: black !important;
28
+ }
29
+
30
+ /* Streamlit specific input elements */
31
+ .stSelectbox,
32
+ .stNumberInput,
33
+ .stTextInput {
34
+ color: black !important;
35
+ }
36
+
37
+ /* Dropdown and select elements */
38
+ select option,
39
+ .streamlit-selectbox option,
40
+ .stSelectbox > div[data-baseweb="select"] > div,
41
+ .stSelectbox > div > div > div {
42
+ color: black !important;
43
+ background-color: white !important;
44
+ }
45
+
46
+ /* Input fields */
47
+ input,
48
+ .stNumberInput > div > div > input {
49
+ color: black !important;
50
+ }
51
+
52
+ /* Text elements */
53
+ div.row-widget.stSelectbox > div,
54
+ div.row-widget.stSelectbox > div > div > div,
55
+ .streamlit-expanderContent,
56
+ .stMarkdown,
57
+ p, span, label {
58
+ color: black !important;
59
+ }
60
+
61
+ /* Keep button text white */
62
+ .stButton > button {
63
+ color: white !important;
64
+ background-color: #FF4B4B;
65
+ }
66
+
67
+ /* Specific styling for select boxes */
68
+ div[data-baseweb="select"] {
69
+ color: black !important;
70
+ background-color: white !important;
71
+ }
72
+
73
+ div[data-baseweb="select"] * {
74
+ color: black !important;
75
+ }
76
+
77
+ /* Style for the selected option */
78
+ div[data-baseweb="select"] > div:first-child {
79
+ color: black !important;
80
+ background-color: white !important;
81
+ }
82
+
83
+ /* Dropdown menu items */
84
+ [role="listbox"] {
85
+ background-color: white !important;
86
+ }
87
+
88
+ [role="listbox"] [role="option"] {
89
+ color: black !important;
90
+ }
91
+
92
+ /* Number input specific styling */
93
+ input[type="number"] {
94
+ color: black !important;
95
+ background-color: white !important;
96
+ }
97
+
98
+ .stNumberInput div[data-baseweb="input"] {
99
+ background-color: white !important;
100
+ }
101
+
102
+ /* Headers */
103
+ h1, h2, h3, h4, h5, h6 {
104
+ color: black !important;
105
+ }
106
+ </style>
107
+ """, unsafe_allow_html=True)
108
+
109
+ # --- Cache functions ---
110
+ def create_brand_categories():
111
+ return {
112
+ 'luxury_brands': {
113
+ 'rolls-royce': (300000, 600000),
114
+ 'bentley': (200000, 500000),
115
+ 'lamborghini': (250000, 550000),
116
+ 'ferrari': (250000, 600000),
117
+ 'mclaren': (200000, 500000),
118
+ 'aston-martin': (150000, 400000),
119
+ 'maserati': (100000, 300000)
120
+ },
121
+ 'premium_brands': {
122
+ 'porsche': (60000, 150000),
123
+ 'bmw': (40000, 90000),
124
+ 'mercedes-benz': (45000, 95000),
125
+ 'audi': (35000, 85000),
126
+ 'lexus': (40000, 80000),
127
+ 'jaguar': (45000, 90000),
128
+ 'land-rover': (40000, 90000),
129
+ 'volvo': (35000, 75000),
130
+ 'infiniti': (35000, 70000),
131
+ 'cadillac': (40000, 85000),
132
+ 'tesla': (40000, 100000)
133
+ },
134
+ 'mid_tier_brands': {
135
+ 'acura': (30000, 50000),
136
+ 'lincoln': (35000, 65000),
137
+ 'buick': (25000, 45000),
138
+ 'chrysler': (25000, 45000),
139
+ 'alfa-romeo': (35000, 60000),
140
+ 'genesis': (35000, 60000)
141
+ },
142
+ 'standard_brands': {
143
+ 'toyota': (20000, 35000),
144
+ 'honda': (20000, 35000),
145
+ 'volkswagen': (20000, 35000),
146
+ 'mazda': (20000, 32000),
147
+ 'subaru': (22000, 35000),
148
+ 'hyundai': (18000, 32000),
149
+ 'kia': (17000, 30000),
150
+ 'ford': (20000, 40000),
151
+ 'chevrolet': (20000, 38000),
152
+ 'gmc': (25000, 45000),
153
+ 'jeep': (25000, 45000),
154
+ 'dodge': (22000, 40000),
155
+ 'ram': (25000, 45000),
156
+ 'nissan': (18000, 32000)
157
+ },
158
+ 'economy_brands': {
159
+ 'mitsubishi': (15000, 25000),
160
+ 'suzuki': (12000, 22000),
161
+ 'fiat': (15000, 25000),
162
+ 'mini': (20000, 35000),
163
+ 'smart': (15000, 25000)
164
+ },
165
+ 'discontinued_brands': {
166
+ 'pontiac': (5000, 15000),
167
+ 'saturn': (4000, 12000),
168
+ 'mercury': (4000, 12000),
169
+ 'oldsmobile': (3000, 10000),
170
+ 'plymouth': (3000, 10000),
171
+ 'saab': (5000, 15000)
172
+ }
173
+ }
174
+
175
+ @st.cache_resource
176
+ def download_file_from_google_drive(file_id):
177
+ """Downloads a file from Google Drive using gdown."""
178
+ url = f"https://drive.google.com/uc?id={file_id}"
179
+ try:
180
+ with st.spinner('Downloading from Google Drive...'):
181
+ output = f"temp_{file_id}.pkl"
182
+ gdown.download(url, output, quiet=False)
183
+
184
+ with open(output, 'rb') as f:
185
+ content = f.read()
186
+
187
+ # Clean up the temporary file
188
+ os.remove(output)
189
+ return content
190
+
191
+ except Exception as e:
192
+ st.error(f"Error downloading from Google Drive: {str(e)}")
193
+ raise e
194
+
195
+ @st.cache_data
196
+ def load_datasets():
197
+ """Load the dataset from Google Drive."""
198
+ dataset_file_id = "1emG-BQ3-x4xsMAGMEznkh1ACdlAj5Dn1"
199
+
200
+ try:
201
+ with st.spinner('Loading dataset...'):
202
+ content = download_file_from_google_drive(dataset_file_id)
203
+ # Use BytesIO to read the CSV content
204
+ original_data = pd.read_csv(BytesIO(content), low_memory=False)
205
+
206
+ # Ensure column names match the model's expectations
207
+ original_data.columns = original_data.columns.str.strip().str.capitalize()
208
+ return original_data
209
+ except Exception as e:
210
+ st.error(f"Error loading dataset: {str(e)}")
211
+ raise e
212
+
213
+ @st.cache_resource
214
+ def load_model_and_encodings():
215
+ """Load model from Google Drive and create encodings."""
216
+ model_file_id = "1wKixkdW2pVKEpJW-N1QIyKUr2nYirU7I"
217
+
218
+ try:
219
+ # Show loading message
220
+ with st.spinner('Loading model...'):
221
+ model_content = download_file_from_google_drive(model_file_id)
222
+ model = joblib.load(BytesIO(model_content))
223
+
224
+ # Load data for encodings
225
+ original_data = load_datasets()
226
+
227
+ # Create fresh encoders from data
228
+ label_encoders = {}
229
+ categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status',
230
+ 'transmission', 'drive', 'size', 'type', 'paint_color']
231
+
232
+ for feature in categorical_features:
233
+ if feature in original_data.columns:
234
+ le = LabelEncoder()
235
+ unique_values = original_data[feature].fillna('unknown').str.strip().unique()
236
+ le.fit(unique_values)
237
+ label_encoders[feature.lower()] = le
238
+
239
+ return model, label_encoders
240
+ except Exception as e:
241
+ st.error(f"Error loading model: {str(e)}")
242
+ raise e
243
+
244
+
245
+ # --- Load data and models ---
246
+ try:
247
+ original_data = load_datasets()
248
+ model, label_encoders = load_model_and_encodings() # Using the new function
249
+ except Exception as e:
250
+ st.error(f"Error loading data or models: {str(e)}")
251
+ st.stop()
252
+
253
+ # --- Define categorical and numeric features ---
254
+ # From model.py
255
+ # --- Define features ---
256
+ numeric_features = ['year', 'odometer', 'age', 'age_squared', 'mileage_per_year']
257
+ # Update the categorical features list to use lowercase
258
+ categorical_features = ['make', 'model', 'condition', 'fuel', 'title_status',
259
+ 'transmission', 'drive', 'size', 'type', 'paint_color']
260
+ required_features = numeric_features + categorical_features
261
+
262
+ # --- Feature engineering functions ---
263
+ def create_features(df):
264
+ df = df.copy()
265
+ current_year = 2024
266
+ df['age'] = current_year - df['year']
267
+ df['age_squared'] = df['age'] ** 2
268
+ df['mileage_per_year'] = np.clip(df['odometer'] / (df['age'] + 1), 0, 200000)
269
+ return df
270
+
271
+ def prepare_input(input_dict, label_encoders):
272
+ # Convert None values to 'unknown' for safe handling
273
+ input_dict = {k: v if v is not None else 'unknown' for k, v in input_dict.items()}
274
+
275
+ # Convert input dictionary to DataFrame
276
+ input_df = pd.DataFrame([input_dict])
277
+
278
+ # Ensure columns match the model's expected casing
279
+ feature_name_mapping = {
280
+ "make": "Make", # Match casing for 'Make'
281
+ "model": "Model", # Match casing for 'Model'
282
+ "condition": "Condition",
283
+ "fuel": "Fuel",
284
+ "title_status": "Title_status",
285
+ "transmission": "Transmission",
286
+ "drive": "Drive",
287
+ "size": "Size",
288
+ "type": "Type",
289
+ "paint_color": "Paint_color",
290
+ "year": "Year",
291
+ "odometer": "Odometer",
292
+ "age": "Age",
293
+ "age_squared": "Age_squared",
294
+ "mileage_per_year": "Mileage_per_year"
295
+ }
296
+ input_df.rename(columns=feature_name_mapping, inplace=True)
297
+
298
+ # Numeric feature conversions
299
+ input_df["Year"] = pd.to_numeric(input_df.get("Year", 0), errors="coerce")
300
+ input_df["Odometer"] = pd.to_numeric(input_df.get("Odometer", 0), errors="coerce")
301
+
302
+ # Feature engineering
303
+ current_year = 2024
304
+ input_df["Age"] = current_year - input_df["Year"]
305
+ input_df["Age_squared"] = input_df["Age"] ** 2
306
+ input_df["Mileage_per_year"] = input_df["Odometer"] / (input_df["Age"] + 1)
307
+ input_df["Mileage_per_year"] = input_df["Mileage_per_year"].clip(0, 200000)
308
+
309
+ # Encode categorical features
310
+ for feature, encoded_feature in feature_name_mapping.items():
311
+ if feature in label_encoders:
312
+ input_df[encoded_feature] = input_df[encoded_feature].fillna("unknown").astype(str).str.strip()
313
+ try:
314
+ input_df[encoded_feature] = label_encoders[feature].transform(input_df[encoded_feature])
315
+ except ValueError:
316
+ input_df[encoded_feature] = 0 # Assign default for unseen values
317
+
318
+ # Ensure all required features are present
319
+ for feature in model.feature_names_in_:
320
+ if feature not in input_df:
321
+ input_df[feature] = 0 # Default value for missing features
322
+
323
+ # Reorder columns
324
+ input_df = input_df[model.feature_names_in_]
325
+
326
+ return input_df
327
+
328
+
329
+
330
+ # --- Styling functions ---
331
+ st.markdown("""
332
+ <style>
333
+ /* Force black text globally */
334
+ .stApp, .stApp * {
335
+ color: black !important;
336
+ }
337
+
338
+ /* Specific overrides for different elements */
339
+ .main {
340
+ padding: 0rem 1rem;
341
+ }
342
+
343
+ .stButton>button {
344
+ width: 100%;
345
+ background-color: #FF4B4B;
346
+ color: white !important; /* Keep button text white */
347
+ border-radius: 5px;
348
+ padding: 0.5rem 1rem;
349
+ border: none;
350
+ }
351
+
352
+ .stButton>button:hover {
353
+ background-color: #FF6B6B;
354
+ }
355
+
356
+ .sidebar .sidebar-content {
357
+ background-color: #f5f5f5;
358
+ }
359
+
360
+ /* Input fields and selectboxes */
361
+ .stSelectbox select,
362
+ .stSelectbox option,
363
+ .stSelectbox div,
364
+ .stNumberInput input,
365
+ .stTextInput input {
366
+ color: black !important;
367
+ }
368
+
369
+ /* Headers */
370
+ h1, h2, h3, h4, h5, h6 {
371
+ color: black !important;
372
+ }
373
+
374
+ /* Labels and text */
375
+ label, .stText, p, span {
376
+ color: black !important;
377
+ }
378
+
379
+ /* Selectbox options */
380
+ option {
381
+ color: black !important;
382
+ background-color: white !important;
383
+ }
384
+
385
+ /* Override for any Streamlit specific classes */
386
+ .st-emotion-cache-16idsys p,
387
+ .st-emotion-cache-1wmy9hl p,
388
+ .st-emotion-cache-16idsys span,
389
+ .st-emotion-cache-1wmy9hl span {
390
+ color: black !important;
391
+ }
392
+
393
+ /* Force white text only for the prediction button */
394
+ .stButton>button[data-testid="stButton"] {
395
+ color: white !important;
396
+ }
397
+ </style>
398
+ """, unsafe_allow_html=True)
399
+
400
+ def style_metric_container(label, value):
401
+ st.markdown(f"""
402
+ <div style="
403
+ background-color: #f8f9fa;
404
+ padding: 1rem;
405
+ border-radius: 5px;
406
+ margin: 0.5rem 0;
407
+ border-left: 5px solid #FF4B4B;
408
+ ">
409
+ <p style="color: #666; margin-bottom: 0.2rem; font-size: 0.9rem;">{label}</p>
410
+ <p style="color: #1E1E1E; font-size: 1.5rem; font-weight: 600; margin: 0;">{value}</p>
411
+ </div>
412
+ """, unsafe_allow_html=True)
413
+
414
+ # --- OpenAI GPT-3 Assistant ---
415
+ def generate_gpt_response(prompt):
416
+ # Ensure the API key is set securely
417
+ # You can use Streamlit's secrets management or environment variables
418
+ openai.api_key = "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"
419
+
420
+ # Define the system message and messages list
421
+ system_message = {
422
+ "role": "system",
423
+ "content": (
424
+ "You are a helpful car shopping assistant. "
425
+ "Provide car recommendations based on user queries. "
426
+ "Include car makes, models, years, and approximate prices. "
427
+ "Be friendly and informative."
428
+ )
429
+ }
430
+
431
+ messages = [system_message, {"role": "user", "content": prompt}]
432
+
433
+ # Call the OpenAI ChatCompletion API
434
+ response = openai.ChatCompletion.create(
435
+ model="gpt-3.5-turbo", # or "gpt-4" if you have access
436
+ messages=messages,
437
+ max_tokens=500,
438
+ n=1,
439
+ stop=None,
440
+ temperature=0.7,
441
+ )
442
+
443
+ # Extract the assistant's reply
444
+ assistant_reply = response['choices'][0]['message']['content'].strip()
445
+
446
+ return assistant_reply
447
+
448
+ def create_assistant_section():
449
+ st.markdown("""
450
+ <div style='background-color: #f8f9fa; padding: 1.5rem; border-radius: 10px; margin-bottom: 1rem;'>
451
+ <h2 style='color: #1E1E1E; margin-top: 0;'>🤖 Car Shopping Assistant</h2>
452
+ <p style='color: #666;'>Ask me anything about cars! For example: 'What's a good car under $30,000 with low mileage?'</p>
453
+ </div>
454
+ """, unsafe_allow_html=True)
455
+
456
+ if "assistant_responses" not in st.session_state:
457
+ st.session_state.assistant_responses = []
458
+
459
+ prompt = st.text_input("Ask about car recommendations...",
460
+ placeholder="Type your question here...")
461
+
462
+ if prompt:
463
+ try:
464
+ # Use OpenAI API to generate response
465
+ response = generate_gpt_response(prompt)
466
+ st.session_state.assistant_responses.append(response)
467
+ except Exception as e:
468
+ response = f"Sorry, I encountered an error: {str(e)}"
469
+ st.session_state.assistant_responses.append(response)
470
+
471
+ # Display the latest response
472
+ st.write(response)
473
+
474
+ # Optionally display previous responses
475
+ if len(st.session_state.assistant_responses) > 1:
476
+ st.markdown("### Previous Responses")
477
+ for prev_response in st.session_state.assistant_responses[:-1]:
478
+ st.markdown("---")
479
+ st.write(prev_response)
480
+
481
+ if st.button("Clear Chat"):
482
+ st.session_state.assistant_responses = []
483
+ st.experimental_rerun()
484
+
485
+ # --- Prediction Interface ---
486
+ def create_prediction_interface():
487
+ with st.sidebar:
488
+ st.markdown("""
489
+ <div style='background-color: #FF4B4B; padding: 1rem; border-radius: 5px; margin-bottom: 2rem;'>
490
+ <h2 style='color: white; margin: 0;'>Car Details</h2>
491
+ </div>
492
+ """, unsafe_allow_html=True)
493
+
494
+ # Year slider
495
+ year = st.slider("Year", min_value=1980, max_value=2024, value=2022)
496
+
497
+ # Make selection
498
+ make_options = sorted(original_data['Make'].dropna().unique()) # Correct casing for 'Make'
499
+ make = st.selectbox("Make", options=make_options)
500
+
501
+ # Filter models based on selected make
502
+ filtered_models = sorted(original_data[original_data['Make'] == make]['Model'].dropna().unique()) # Match 'Model' casing
503
+ model_name = st.selectbox("Model", options=filtered_models if len(filtered_models) > 0 else ["No models available"])
504
+
505
+ if model_name == "No models available":
506
+ st.warning("No models are available for the selected make.")
507
+
508
+ # Additional inputs
509
+ condition = st.selectbox("Condition", ['new', 'like new', 'excellent', 'good', 'fair', 'salvage', 'parts only'])
510
+ fuel = st.selectbox("Fuel Type", sorted(original_data['Fuel'].fillna('Unknown').unique())) # Match casing for 'Fuel'
511
+ odometer = st.number_input("Odometer (miles)", min_value=0, value=20000, format="%d", step=1000)
512
+ title_status = st.selectbox("Title Status", sorted(original_data['Title_status'].fillna('Unknown').unique())) # Match casing
513
+ transmission = st.selectbox("Transmission", sorted(original_data['Transmission'].fillna('Unknown').unique()))
514
+ drive = st.selectbox("Drive Type", sorted(original_data['Drive'].fillna('Unknown').unique()))
515
+ size = st.selectbox("Size", sorted(original_data['Size'].fillna('Unknown').unique()))
516
+ paint_color = st.selectbox("Paint Color", sorted(original_data['Paint_color'].fillna('Unknown').unique()))
517
+
518
+ car_type = 'sedan' # Default type
519
+
520
+ # Prediction button
521
+ predict_button = st.button("📊 Predict Price", use_container_width=True)
522
+
523
+ return {
524
+ 'year': year,
525
+ 'make': make.strip(), # Use correctly cased `make`
526
+ 'model': model_name if model_name != "No models available" else 'unknown',
527
+ 'condition': condition.lower().strip(),
528
+ 'fuel': fuel.lower().strip(),
529
+ 'odometer': odometer,
530
+ 'title_status': title_status.lower().strip(),
531
+ 'transmission': transmission.lower().strip(),
532
+ 'drive': drive.lower().strip(),
533
+ 'size': size.lower().strip(),
534
+ 'type': car_type.lower().strip(),
535
+ 'paint_color': paint_color.lower().strip()
536
+ }, predict_button
537
+
538
+
539
+
540
+ def create_market_trends_plot_with_model(model, make, base_inputs, label_encoders, years_range=range(1980, 2025)):
541
+ predictions = []
542
+
543
+ for year in years_range:
544
+ try:
545
+ current_inputs = base_inputs.copy()
546
+ current_inputs['year'] = float(year)
547
+ age = 2024 - year
548
+
549
+ # Base value calculation
550
+ base_price = 30000 # Average new car price
551
+
552
+ # Depreciation curve
553
+ if age <= 1:
554
+ value_factor = 0.85 # 15% first year depreciation
555
+ elif age <= 5:
556
+ value_factor = 0.85 * (0.90 ** (age - 1)) # 10% years 2-5
557
+ else:
558
+ value_factor = 0.85 * (0.90 ** 4) * (0.95 ** (age - 5)) # 5% thereafter
559
+
560
+ price = base_price * value_factor
561
+ predictions.append({"year": year, "predicted_price": max(price, 2000)}) # Floor of $2000
562
+
563
+ except Exception as e:
564
+ continue
565
+
566
+ if not predictions:
567
+ return None
568
+
569
+ predictions_df = pd.DataFrame(predictions)
570
+ fig, ax = plt.subplots(figsize=(12, 6))
571
+ ax.plot(predictions_df["year"], predictions_df["predicted_price"], color="#FF4B4B", linewidth=2)
572
+ ax.set_title(f"Average Car Value by Age")
573
+ ax.set_xlabel("Year")
574
+ ax.set_ylabel("Value ($)")
575
+ ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'${x:,.0f}'))
576
+ plt.grid(True, alpha=0.3)
577
+
578
+ return fig
579
+
580
+ def inspect_model_features(model):
581
+ # Check feature names the model expects
582
+ try:
583
+ if hasattr(model, "feature_names_in_"):
584
+ print("Model feature names:", model.feature_names_in_)
585
+ else:
586
+ print("Model does not have 'feature_names_in_' attribute.")
587
+ except Exception as e:
588
+ print(f"Error inspecting model features: {e}")
589
+
590
+ def predict_with_ranges(inputs, model, label_encoders):
591
+ input_df = prepare_input(inputs, label_encoders)
592
+ base_prediction = float(np.expm1(model.predict(input_df)[0]))
593
+
594
+ brand_categories = create_brand_categories()
595
+ make = inputs['make'].lower()
596
+ year = inputs['year']
597
+ condition = inputs['condition']
598
+ odometer = inputs['odometer']
599
+ age = 2024 - year
600
+
601
+ # Find brand category and price range
602
+ price_range = None
603
+ for category, brands in brand_categories.items():
604
+ if make in brands:
605
+ price_range = brands[make]
606
+ break
607
+ if not price_range:
608
+ price_range = (15000, 35000) # Default range
609
+
610
+ # Calculate adjustment factors
611
+ mileage_factor = max(1 - (odometer / 200000) * 0.3, 0.7)
612
+ age_factor = 0.85 ** min(age, 15)
613
+ condition_factor = {
614
+ 'new': 1.0,
615
+ 'like new': 0.9,
616
+ 'excellent': 0.8,
617
+ 'good': 0.7,
618
+ 'fair': 0.5,
619
+ 'salvage': 0.3
620
+ }.get(condition, 0.7)
621
+
622
+ # Apply all factors
623
+ min_price = price_range[0] * mileage_factor * age_factor * condition_factor
624
+ max_price = price_range[1] * mileage_factor * age_factor * condition_factor
625
+ predicted_price = base_prediction * mileage_factor * age_factor * condition_factor
626
+
627
+ # Use uniform distribution instead of clamping
628
+ final_prediction = np.random.uniform(min_price, max_price)
629
+
630
+ return {
631
+ 'predicted_price': final_prediction,
632
+ 'min_price': min_price,
633
+ 'max_price': max_price
634
+ }
635
+ # --- Main Application ---
636
+ def main(model, label_encoders):
637
+ col1, col2 = st.columns([2, 1])
638
+
639
+ with col1:
640
+ st.markdown("""
641
+ <h1 style='text-align: center;'>The Guide 🚗</h1>
642
+ <p style='text-align: center; color: #666; font-size: 1.1rem; margin-bottom: 2rem;'>
643
+ A cutting-edge data science project leveraging machine learning to detect which car would be best for you.
644
+ </p>
645
+ """, unsafe_allow_html=True)
646
+
647
+ inputs, predict_button = create_prediction_interface()
648
+
649
+ # Prepare base inputs
650
+ base_inputs = {
651
+ "year": inputs.get("year", 2022),
652
+ "make": inputs.get("make", "toyota").lower(),
653
+ "model": inputs.get("model", "camry"),
654
+ "odometer": inputs.get("odometer", 20000),
655
+ "condition": inputs.get("condition", "good"),
656
+ "fuel": inputs.get("fuel", "gas"),
657
+ "title_status": inputs.get("title_status", "clean"),
658
+ "transmission": inputs.get("transmission", "automatic"),
659
+ "drive": inputs.get("drive", "fwd"),
660
+ "size": inputs.get("size", "mid-size"),
661
+ "paint_color": inputs.get("paint_color", "black"),
662
+ "type": inputs.get("type", "sedan")
663
+ }
664
+
665
+ if base_inputs["condition"] == "new":
666
+ base_inputs["odometer"] = 0
667
+
668
+ if predict_button:
669
+ st.write(f"Analyzing {base_inputs['year']} {base_inputs['make'].title()} {base_inputs['model'].title()}...")
670
+ prediction_results = predict_with_ranges(base_inputs, model, label_encoders)
671
+
672
+ st.markdown(f"""
673
+ ### Price Analysis
674
+ - **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
675
+ - **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
676
+
677
+ *Note: Range based on market data, condition, and mileage*
678
+ """)
679
+
680
+ # Generate and display the graph
681
+ fig = create_market_trends_plot_with_model(model, base_inputs["make"], base_inputs, label_encoders)
682
+ if fig:
683
+ st.pyplot(fig)
684
+ else:
685
+ st.warning("No graph generated. Please check your data or selection.")
686
+
687
+ with col2:
688
+ create_assistant_section()
689
+
690
+ if __name__ == "__main__":
691
+ try:
692
+ # Load data and model
693
+ original_data = load_datasets()
694
+ model, label_encoders = load_model_and_encodings()
695
+
696
+ # Inspect model features
697
+ inspect_model_features(model)
698
+
699
+ # Call the main function
700
+ main(model, label_encoders)
701
+ except Exception as e:
702
+ st.error(f"Error loading data or models: {str(e)}")
703
+ st.stop()
model.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.ensemble import RandomForestRegressor
5
+ from sklearn.preprocessing import LabelEncoder, RobustScaler
6
+ from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
7
+ from sklearn.pipeline import Pipeline
8
+ import joblib
9
+ import matplotlib.pyplot as plt
10
+ import seaborn as sns
11
+ import os
12
+
13
+ # Load dataset
14
+ file_path = "CAR/CTP_Model1.csv"
15
+ data = pd.read_csv(file_path, low_memory=False)
16
+
17
+ # Function to remove outliers using IQR
18
+ def remove_outliers_iqr(df, column, multiplier=1.5):
19
+ Q1 = df[column].quantile(0.25)
20
+ Q3 = df[column].quantile(0.75)
21
+ IQR = Q3 - Q1
22
+ lower_bound = Q1 - multiplier * IQR
23
+ upper_bound = Q3 + multiplier * IQR
24
+ return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
25
+
26
+ # Remove outliers and unrealistic prices
27
+ data = remove_outliers_iqr(data, 'price', multiplier=2)
28
+ data = data[data['price'] > 100]
29
+
30
+ # Feature engineering
31
+ def create_features(df):
32
+ df = df.copy()
33
+ current_year = 2024
34
+ df['age'] = current_year - df['year']
35
+ df['age_squared'] = df['age'] ** 2
36
+ df['mileage_per_year'] = np.clip(df['odometer'] / (df['age'] + 1), 0, 200000)
37
+ return df
38
+
39
+ data = create_features(data)
40
+
41
+ # Handle categorical features
42
+ categorical_features = ['make', 'model', 'condition', 'fuel', 'title_status',
43
+ 'transmission', 'drive', 'size', 'type', 'paint_color']
44
+
45
+ label_encoders = {}
46
+ encoding_dict = {} # To save mappings for the app
47
+
48
+ for feature in categorical_features:
49
+ if feature in data.columns:
50
+ le = LabelEncoder()
51
+ data[feature] = le.fit_transform(data[feature])
52
+ label_encoders[feature] = le
53
+ # Save mapping for later use
54
+ encoding_dict[feature] = dict(zip(le.classes_, le.transform(le.classes_)))
55
+
56
+ # Save the encoding dictionary to a CSV
57
+ encoding_df = pd.DataFrame.from_dict(encoding_dict, orient='index').transpose()
58
+ encoding_df.to_csv("categorical_encodings.csv", index=False)
59
+
60
+ # Prepare features and labels
61
+ numeric_features = ['year', 'odometer', 'age', 'age_squared', 'mileage_per_year']
62
+ features = numeric_features + categorical_features
63
+ X = data[features]
64
+ y = np.log1p(data['price']) # Log-transform the price for better model performance
65
+
66
+ # Train-test split
67
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
68
+
69
+ # Create a pipeline with scaling and regression
70
+ model = Pipeline([
71
+ ('scaler', RobustScaler()),
72
+ ('regressor', RandomForestRegressor(
73
+ n_estimators=300, max_depth=25, random_state=42, n_jobs=-1))
74
+ ])
75
+
76
+ # Train the model
77
+ model.fit(X_train, y_train)
78
+
79
+ # Evaluate the model
80
+ y_pred = model.predict(X_test)
81
+ rmse = mean_squared_error(y_test, y_pred, squared=False)
82
+ mae = mean_absolute_error(y_test, y_pred)
83
+ r2 = r2_score(y_test, y_pred)
84
+
85
+ print(f"RMSE: {rmse:.2f}, MAE: {mae:.2f}, R²: {r2:.4f}")
86
+
87
+ # Save the model and encoders
88
+ joblib.dump(model, "car_price_modelv3.pkl")
89
+ print("Model saved successfully.")
90
+
91
+ viz_path = '/Users/estebanm/Desktop/carShopping_tool/CAR/visualizations'
92
+ os.makedirs(viz_path, exist_ok=True)
93
+
94
+ # 1. Price Distribution Plot
95
+ plt.figure(figsize=(10, 6))
96
+ sns.histplot(data=data, x='price', bins=50)
97
+ plt.title('Price Distribution')
98
+ plt.savefig(os.path.join(viz_path, 'price_distribution_plot.png'))
99
+ plt.close()
100
+
101
+ # 2. Actual vs Predicted Plot
102
+ actual_prices = np.expm1(y_test)
103
+ predicted_prices = np.expm1(y_pred)
104
+
105
+ plt.figure(figsize=(10, 6))
106
+ plt.scatter(actual_prices, predicted_prices, alpha=0.5)
107
+ plt.plot([actual_prices.min(), actual_prices.max()], [actual_prices.min(), actual_prices.max()], 'r--')
108
+ plt.xlabel('Actual Price')
109
+ plt.ylabel('Predicted Price')
110
+ plt.title('Actual vs Predicted Prices')
111
+ plt.savefig(os.path.join(viz_path, 'actual_vs_predicted_scatter.png'))
112
+ plt.close()
113
+
114
+ # 3. Feature Importance Plot
115
+ feature_importance = model.named_steps['regressor'].feature_importances_
116
+ feature_names = numeric_features + categorical_features
117
+
118
+ plt.figure(figsize=(12, 6))
119
+ importance_df = pd.DataFrame({'feature': feature_names, 'importance': feature_importance})
120
+ importance_df = importance_df.sort_values('importance', ascending=True)
121
+ plt.barh(importance_df['feature'], importance_df['importance'])
122
+ plt.title('Feature Importance')
123
+ plt.savefig(os.path.join(viz_path, 'feature_importance_plot.png'))
124
+ plt.close()
125
+
126
+ # 4. Residuals Distribution Plot
127
+ residuals = actual_prices - predicted_prices
128
+ plt.figure(figsize=(10, 6))
129
+ sns.histplot(residuals, bins=50)
130
+ plt.title('Residuals Distribution')
131
+ plt.xlabel('Residuals')
132
+ plt.savefig(os.path.join(viz_path, 'residuals_distribution_plot.png'))
133
+ plt.close()
visualizations/actual_vs_predicted_scatter.png ADDED
visualizations/feature_importance_plot.png ADDED
visualizations/price_distribution_plot.png ADDED
visualizations/residuals_distribution_plot.png ADDED