Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,21 @@ import numpy as np
|
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Function definitions
|
14 |
|
15 |
def load_image(image_file):
|
@@ -33,29 +48,14 @@ def classify_image(image):
|
|
33 |
st.error("Image classification failed. Please try again.")
|
34 |
return None
|
35 |
|
36 |
-
@st.cache_data
|
37 |
-
def load_datasets():
|
38 |
-
try:
|
39 |
-
with st.spinner('Loading dataset...'):
|
40 |
-
# Use BytesIO to read the CSV content
|
41 |
-
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
|
42 |
-
|
43 |
-
|
44 |
-
# Ensure column names match the model's expectations
|
45 |
-
original_data.columns = original_data.columns.str.strip().str.capitalize()
|
46 |
-
return original_data
|
47 |
-
except Exception as e:
|
48 |
-
st.error(f"Error loading dataset: {str(e)}")
|
49 |
-
raise e
|
50 |
-
|
51 |
def find_closest_match(df, brand, model):
|
52 |
-
match = df[(df['
|
53 |
if not match.empty:
|
54 |
return match.iloc[0]
|
55 |
return None
|
56 |
|
57 |
def get_car_overview(car_data):
|
58 |
-
prompt = f"Provide an overview of the following car:\nYear: {car_data['
|
59 |
response = openai.ChatCompletion.create(
|
60 |
model="gpt-3.5-turbo",
|
61 |
messages=[{"role": "user", "content": prompt}]
|
@@ -68,11 +68,12 @@ def load_model_and_encodings():
|
|
68 |
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
|
69 |
model = joblib.load(model_content)
|
70 |
|
71 |
-
|
|
|
72 |
|
73 |
label_encoders = {}
|
74 |
-
categorical_features = ['Make', '
|
75 |
-
'
|
76 |
|
77 |
for feature in categorical_features:
|
78 |
if feature in original_data.columns:
|
@@ -103,9 +104,6 @@ def predict_price(model, encoders, user_input):
|
|
103 |
st.title("Auto Appraise")
|
104 |
st.write("Capture a car image using your camera or upload an image to get its brand, model, overview, and expected price!")
|
105 |
|
106 |
-
# Load the CSV file
|
107 |
-
df = pd.read_csv('CTP_Model1.csv')
|
108 |
-
|
109 |
# Load model and encoders
|
110 |
model, label_encoders = load_model_and_encodings()
|
111 |
|
@@ -118,62 +116,66 @@ camera_image = st.camera_input("Take a picture of the car!")
|
|
118 |
|
119 |
if camera_image is not None:
|
120 |
image = load_image(camera_image)
|
121 |
-
st.image(image, caption='Captured Image.',
|
122 |
|
123 |
# Classify the car image
|
124 |
car_info = classify_image(image)
|
125 |
if car_info:
|
126 |
-
brand = car_info
|
127 |
-
model_name = car_info
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
176 |
else:
|
177 |
-
st.
|
178 |
else:
|
179 |
st.write("Please take a picture of the car to proceed.")
|
|
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
+
# Dataset loading function with caching
|
14 |
+
@st.cache_data
|
15 |
+
def load_datasets():
|
16 |
+
try:
|
17 |
+
with st.spinner('Loading dataset...'):
|
18 |
+
# Load the CSV content
|
19 |
+
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
|
20 |
+
|
21 |
+
# Ensure column names match the model's expectations
|
22 |
+
original_data.columns = original_data.columns.str.strip().str.capitalize()
|
23 |
+
return original_data
|
24 |
+
except Exception as e:
|
25 |
+
st.error(f"Error loading dataset: {str(e)}")
|
26 |
+
raise e
|
27 |
+
|
28 |
# Function definitions
|
29 |
|
30 |
def load_image(image_file):
|
|
|
48 |
st.error("Image classification failed. Please try again.")
|
49 |
return None
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def find_closest_match(df, brand, model):
|
52 |
+
match = df[(df['Make'].str.contains(brand, case=False)) & (df['Model'].str.contains(model, case=False))]
|
53 |
if not match.empty:
|
54 |
return match.iloc[0]
|
55 |
return None
|
56 |
|
57 |
def get_car_overview(car_data):
|
58 |
+
prompt = f"Provide an overview of the following car:\nYear: {car_data['Year']}\nMake: {car_data['Make']}\nModel: {car_data['Model']}\nTrim: {car_data['Trim']}\nPrice: ${car_data['Price']}\nCondition: {car_data['Condition']}\n"
|
59 |
response = openai.ChatCompletion.create(
|
60 |
model="gpt-3.5-turbo",
|
61 |
messages=[{"role": "user", "content": prompt}]
|
|
|
68 |
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
|
69 |
model = joblib.load(model_content)
|
70 |
|
71 |
+
# Load datasets
|
72 |
+
original_data = load_datasets()
|
73 |
|
74 |
label_encoders = {}
|
75 |
+
categorical_features = ['Make', 'Model', 'Condition', 'Fuel', 'Title_status',
|
76 |
+
'Transmission', 'Drive', 'Size', 'Type', 'Paint_color']
|
77 |
|
78 |
for feature in categorical_features:
|
79 |
if feature in original_data.columns:
|
|
|
104 |
st.title("Auto Appraise")
|
105 |
st.write("Capture a car image using your camera or upload an image to get its brand, model, overview, and expected price!")
|
106 |
|
|
|
|
|
|
|
107 |
# Load model and encoders
|
108 |
model, label_encoders = load_model_and_encodings()
|
109 |
|
|
|
116 |
|
117 |
if camera_image is not None:
|
118 |
image = load_image(camera_image)
|
119 |
+
st.image(image, caption='Captured Image.', use_container_width=True) # Updated parameter
|
120 |
|
121 |
# Classify the car image
|
122 |
car_info = classify_image(image)
|
123 |
if car_info:
|
124 |
+
brand = car_info.get('brand', None) # Adjust according to the response structure
|
125 |
+
model_name = car_info.get('model', None)
|
126 |
+
|
127 |
+
if brand and model_name:
|
128 |
+
st.write(f"Identified Car: {brand} {model_name}")
|
129 |
+
|
130 |
+
# Find the closest match in the CSV
|
131 |
+
match = find_closest_match(df, brand, model_name)
|
132 |
+
if match is not None:
|
133 |
+
st.write("Closest Match Found:")
|
134 |
+
st.write(match)
|
135 |
+
|
136 |
+
# Get additional information using GPT-3.5-turbo
|
137 |
+
overview = get_car_overview(match)
|
138 |
+
st.write("Car Overview:")
|
139 |
+
st.write(overview)
|
140 |
+
|
141 |
+
# Interactive Price Prediction
|
142 |
+
st.subheader("Price Prediction Over Time")
|
143 |
+
selected_years = st.slider("Select range of years for price prediction",
|
144 |
+
min_value=2000, max_value=2023, value=(2010, 2023))
|
145 |
+
|
146 |
+
years = np.arange(selected_years[0], selected_years[1] + 1)
|
147 |
+
predicted_prices = []
|
148 |
+
|
149 |
+
for year in years:
|
150 |
+
user_input = {
|
151 |
+
'Make': brand,
|
152 |
+
'Model': model_name,
|
153 |
+
'Condition': match['Condition'],
|
154 |
+
'Fuel': match['Fuel'],
|
155 |
+
'Title_status': match['Title_status'],
|
156 |
+
'Transmission': match['Transmission'],
|
157 |
+
'Drive': match['Drive'],
|
158 |
+
'Size': match['Size'],
|
159 |
+
'Type': match['Type'],
|
160 |
+
'Paint_color': match['Paint_color'],
|
161 |
+
'Year': year
|
162 |
+
}
|
163 |
+
|
164 |
+
price = predict_price(model, label_encoders, user_input)
|
165 |
+
predicted_prices.append(price)
|
166 |
+
|
167 |
+
# Plotting the results
|
168 |
+
plt.figure(figsize=(10, 5))
|
169 |
+
plt.plot(years, predicted_prices, marker='o')
|
170 |
+
plt.title(f"Predicted Price of {brand} {model_name} Over Time")
|
171 |
+
plt.xlabel("Year")
|
172 |
+
plt.ylabel("Predicted Price ($)")
|
173 |
+
plt.grid()
|
174 |
+
st.pyplot(plt)
|
175 |
+
|
176 |
+
else:
|
177 |
+
st.write("No match found in the database.")
|
178 |
else:
|
179 |
+
st.error("Could not identify the brand or model. Please try again.")
|
180 |
else:
|
181 |
st.write("Please take a picture of the car to proceed.")
|