Spaces:
Sleeping
Sleeping
Rename backend.py to app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sqlite3
|
| 2 |
+
import contextlib
|
| 3 |
+
import json
|
| 4 |
+
from http.server import BaseHTTPRequestHandler
|
| 5 |
+
from urllib.parse import urlparse, parse_qs
|
| 6 |
+
import traceback
|
| 7 |
+
from pydantic import BaseModel, Field
|
| 8 |
+
from typing import List, Dict, Tuple
|
| 9 |
+
import os
|
| 10 |
+
from langchain_community.vectorstores import FAISS
|
| 11 |
+
from langchain_community.embeddings import FakeEmbeddings
|
| 12 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
| 13 |
+
from together import Together
|
| 14 |
+
import numpy as np
|
| 15 |
+
from collections import defaultdict
|
| 16 |
+
|
| 17 |
+
app = FastAPI(title="Knowledge Graph API")
|
| 18 |
+
|
| 19 |
+
# Enable CORS for frontend access
|
| 20 |
+
app.add_middleware(
|
| 21 |
+
CORSMiddleware,
|
| 22 |
+
allow_origins=["*"],
|
| 23 |
+
allow_credentials=True,
|
| 24 |
+
allow_methods=["*"],
|
| 25 |
+
allow_headers=["*"],
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Database configuration - UPDATE THESE PATHS
|
| 29 |
+
DATABASE_CONFIG = {
|
| 30 |
+
"triplets_db": "triplets_new.db",
|
| 31 |
+
"definitions_db": "relations_new.db",
|
| 32 |
+
"news_db": "cnnhealthnews2.db",
|
| 33 |
+
"triplets_table": "triplets",
|
| 34 |
+
"definitions_table": "relations",
|
| 35 |
+
"head_column": "head_entity",
|
| 36 |
+
"relation_column": "relation",
|
| 37 |
+
"tail_column": "tail_entity",
|
| 38 |
+
"definition_column": "definition",
|
| 39 |
+
"link_column": "link",
|
| 40 |
+
"title_column": "column",
|
| 41 |
+
"content_column": "content"
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
class GraphNode(BaseModel):
|
| 45 |
+
id: str
|
| 46 |
+
label: str
|
| 47 |
+
type: str = "entity"
|
| 48 |
+
|
| 49 |
+
class GraphEdge(BaseModel):
|
| 50 |
+
source: str
|
| 51 |
+
target: str
|
| 52 |
+
relation: str
|
| 53 |
+
definition: Optional[str] = None
|
| 54 |
+
|
| 55 |
+
class GraphData(BaseModel):
|
| 56 |
+
nodes: List[GraphNode]
|
| 57 |
+
edges: List[GraphEdge]
|
| 58 |
+
|
| 59 |
+
class TripletData(BaseModel):
|
| 60 |
+
head: str
|
| 61 |
+
relation: str
|
| 62 |
+
tail: str
|
| 63 |
+
|
| 64 |
+
class RelationDefinition(BaseModel):
|
| 65 |
+
relation: str
|
| 66 |
+
definition: str
|
| 67 |
+
|
| 68 |
+
class RetrieveTripletsResponse(BaseModel):
|
| 69 |
+
triplets: List[TripletData]
|
| 70 |
+
relations: List[RelationDefinition]
|
| 71 |
+
|
| 72 |
+
class NewsItem(BaseModel):
|
| 73 |
+
url: str
|
| 74 |
+
content: str
|
| 75 |
+
preview: str
|
| 76 |
+
title: str
|
| 77 |
+
|
| 78 |
+
class QueryRequest(BaseModel):
|
| 79 |
+
query: str
|
| 80 |
+
|
| 81 |
+
class QueryResponse(BaseModel):
|
| 82 |
+
answer: str
|
| 83 |
+
triplets: List[TripletData]
|
| 84 |
+
relations: List[RelationDefinition]
|
| 85 |
+
news_items: List[NewsItem]
|
| 86 |
+
graph_data: GraphData
|
| 87 |
+
|
| 88 |
+
class ExtractedInformationNews(BaseModel):
|
| 89 |
+
extracted_information: str = Field(description="Extracted information")
|
| 90 |
+
links: list = Field(description="citation links")
|
| 91 |
+
|
| 92 |
+
class ExtractedInformation(BaseModel):
|
| 93 |
+
extracted_information: str = Field(description="Extracted information")
|
| 94 |
+
|
| 95 |
+
@contextlib.contextmanager
|
| 96 |
+
def get_triplets_db():
|
| 97 |
+
conn = None
|
| 98 |
+
try:
|
| 99 |
+
conn = sqlite3.connect(DATABASE_CONFIG["triplets_db"])
|
| 100 |
+
yield conn
|
| 101 |
+
finally:
|
| 102 |
+
if conn:
|
| 103 |
+
conn.close()
|
| 104 |
+
|
| 105 |
+
@contextlib.contextmanager
|
| 106 |
+
def get_news_db():
|
| 107 |
+
conn = None
|
| 108 |
+
try:
|
| 109 |
+
conn = sqlite3.connect(DATABASE_CONFIG["news_db"])
|
| 110 |
+
yield conn
|
| 111 |
+
finally:
|
| 112 |
+
if conn:
|
| 113 |
+
conn.close()
|
| 114 |
+
|
| 115 |
+
@contextlib.contextmanager
|
| 116 |
+
def get_definitions_db():
|
| 117 |
+
conn = None
|
| 118 |
+
try:
|
| 119 |
+
conn = safe_connect(DATABASE_CONFIG["definitions_db"])
|
| 120 |
+
yield conn
|
| 121 |
+
finally:
|
| 122 |
+
if conn:
|
| 123 |
+
conn.close()
|
| 124 |
+
|
| 125 |
+
def retrieve_triplets(query: str) -> Tuple[List[Tuple[str, str, str]], List[Tuple[str, str]]]:
|
| 126 |
+
"""
|
| 127 |
+
Args:
|
| 128 |
+
query (str): User query
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
Tuple containing:
|
| 132 |
+
- List of triplets: [(head, relation, tail), ...]
|
| 133 |
+
- List of relations with definitions: [(relation, definition), ...]
|
| 134 |
+
"""
|
| 135 |
+
API_KEY = os.environ.get("TOGETHER_API_KEY")
|
| 136 |
+
client = Together(api_key = API_KEY)
|
| 137 |
+
|
| 138 |
+
dummy_embeddings = FakeEmbeddings(size=768)
|
| 139 |
+
triplets_store = FAISS.load_local(
|
| 140 |
+
"triplets_index_compressed", dummy_embeddings, allow_dangerous_deserialization=True
|
| 141 |
+
)
|
| 142 |
+
triplets_store.index.nprobe = 100
|
| 143 |
+
triplets_store._normalize_L2 = True
|
| 144 |
+
triplets_store.distance_strategy = DistanceStrategy.COSINE
|
| 145 |
+
|
| 146 |
+
response = client.embeddings.create(
|
| 147 |
+
model = "Alibaba-NLP/gte-modernbert-base",
|
| 148 |
+
input = query
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
emb = np.array(response.data[0].embedding)
|
| 152 |
+
emb = emb / np.linalg.norm(emb)
|
| 153 |
+
|
| 154 |
+
related_head_entity = []
|
| 155 |
+
result_triplets = triplets_store.similarity_search_with_score_by_vector(emb, k=100)
|
| 156 |
+
for res, score in result_triplets:
|
| 157 |
+
if score > 0.7:
|
| 158 |
+
related_head_entity.append(res)
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
all_triplets = []
|
| 162 |
+
with get_triplets_db() as conn:
|
| 163 |
+
head_col = DATABASE_CONFIG["head_column"]
|
| 164 |
+
rel_col = DATABASE_CONFIG["relation_column"]
|
| 165 |
+
tail_col = DATABASE_CONFIG["tail_column"]
|
| 166 |
+
|
| 167 |
+
for head_entity in related_head_entity:
|
| 168 |
+
he = head_entity.page_content
|
| 169 |
+
cursor = conn.cursor()
|
| 170 |
+
cursor.execute("SELECT * FROM triplets WHERE head_entity = (?)", ([he]))
|
| 171 |
+
rows = cursor.fetchall()
|
| 172 |
+
triplets = [(str(row[0]), str(row[1]), str(row[2])) for row in rows]
|
| 173 |
+
all_triplets += triplets
|
| 174 |
+
|
| 175 |
+
all_relations = []
|
| 176 |
+
relations = [relation for _, relation, _ in all_triplets]
|
| 177 |
+
with get_definitions_db() as conn:
|
| 178 |
+
rel_col = DATABASE_CONFIG["relation_column"]
|
| 179 |
+
def_col = DATABASE_CONFIG["definition_column"]
|
| 180 |
+
|
| 181 |
+
for rel in set(relations):
|
| 182 |
+
cursor = conn.cursor()
|
| 183 |
+
cursor.execute("SELECT * FROM relations WHERE relation = (?)", ([rel]))
|
| 184 |
+
rows = cursor.fetchall()
|
| 185 |
+
relation = [(str(row[0]), str(row[1])) for row in rows]
|
| 186 |
+
all_relations += relation
|
| 187 |
+
|
| 188 |
+
return all_triplets, all_relations
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error in retrieve_triplets: {e}")
|
| 192 |
+
return [], []
|
| 193 |
+
|
| 194 |
+
def retrieve_news(query: str) -> Dict[str, str]:
|
| 195 |
+
"""
|
| 196 |
+
Args:
|
| 197 |
+
query (str): User query
|
| 198 |
+
|
| 199 |
+
Returns: Tuple
|
| 200 |
+
- Related content
|
| 201 |
+
- Links of the related content
|
| 202 |
+
"""
|
| 203 |
+
API_KEY = os.environ.get("TOGETHER_API_KEY")
|
| 204 |
+
client = Together(api_key = API_KEY)
|
| 205 |
+
|
| 206 |
+
dummy_embeddings = FakeEmbeddings(size=768)
|
| 207 |
+
news_store = FAISS.load_local(
|
| 208 |
+
"news_index_compressed", dummy_embeddings, allow_dangerous_deserialization=True
|
| 209 |
+
)
|
| 210 |
+
news_store.index.nprobe = 100
|
| 211 |
+
news_store._normalize_L2 = True
|
| 212 |
+
news_store.distance_strategy = DistanceStrategy.COSINE
|
| 213 |
+
|
| 214 |
+
news_store._normalize_L2 = True
|
| 215 |
+
news_store.distance_strategy = DistanceStrategy.COSINE
|
| 216 |
+
|
| 217 |
+
response = client.embeddings.create(
|
| 218 |
+
model = "Alibaba-NLP/gte-modernbert-base",
|
| 219 |
+
input = query
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
emb = np.array(response.data[0].embedding)
|
| 223 |
+
emb = emb / np.linalg.norm(emb)
|
| 224 |
+
|
| 225 |
+
related_news_content = []
|
| 226 |
+
result_news= news_store.similarity_search_with_score_by_vector(emb, k=500)
|
| 227 |
+
for res, score in result_news:
|
| 228 |
+
if score > 0.7:
|
| 229 |
+
print(score)
|
| 230 |
+
related_news_content.append(res)
|
| 231 |
+
|
| 232 |
+
news_dict = defaultdict(list)
|
| 233 |
+
links = [res.metadata["link"] for res in related_news_content]
|
| 234 |
+
for idx, link in enumerate(links):
|
| 235 |
+
news_dict[link].append(related_news_content[idx].page_content)
|
| 236 |
+
|
| 237 |
+
content_only = [". ".join(sentences) for sentences in news_dict.values()]
|
| 238 |
+
|
| 239 |
+
return content_only, links
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def extract_information_from_triplets(query: str,
|
| 243 |
+
triplets: List[Tuple[str, str, str]],
|
| 244 |
+
relations: List[Tuple[str, str]]) -> str:
|
| 245 |
+
"""
|
| 246 |
+
REPLACE THIS FUNCTION WITH YOUR ACTUAL IMPLEMENTATION
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
triplets: List of triplets from retrieve_triplets
|
| 250 |
+
relations: List of relation definitions from retrieve_triplets
|
| 251 |
+
|
| 252 |
+
Returns:
|
| 253 |
+
str: Extracted information from triplets
|
| 254 |
+
"""
|
| 255 |
+
system_prompt = f'''Given a a list of relational triplets and a list of relation and its definition. Extract the information from the triplets to answer query question.
|
| 256 |
+
If there is no related or useful information can be extracted from the triplets to answer the query question, inform "No related information found."
|
| 257 |
+
Give the output in paragraphs form narratively, you can explain the reason behind your answer in detail."
|
| 258 |
+
'''
|
| 259 |
+
|
| 260 |
+
user_prompt = f'''
|
| 261 |
+
query question: {query}
|
| 262 |
+
list of triplets: {triplets}
|
| 263 |
+
list of relations and their definition: {relations}
|
| 264 |
+
extracted information:
|
| 265 |
+
'''
|
| 266 |
+
|
| 267 |
+
API_KEY = os.environ.get("TOGETHER_API_KEY")
|
| 268 |
+
client = Together(api_key = API_KEY)
|
| 269 |
+
|
| 270 |
+
response = client.chat.completions.create(
|
| 271 |
+
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
| 272 |
+
temperature = 0,
|
| 273 |
+
messages=[{
|
| 274 |
+
"role": "system",
|
| 275 |
+
"content": [
|
| 276 |
+
{"type": "text", "text":system_prompt}
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"role": "user",
|
| 281 |
+
"content": [
|
| 282 |
+
{"type": "text", "text":user_prompt},
|
| 283 |
+
]
|
| 284 |
+
}]
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
return response.choices[0].message.content
|
| 288 |
+
|
| 289 |
+
def extract_information_from_news(query: str,
|
| 290 |
+
news_list: Dict[str, str]) -> Tuple[str, List[str]]:
|
| 291 |
+
"""
|
| 292 |
+
Args:
|
| 293 |
+
news_list: List from retrieve_news
|
| 294 |
+
|
| 295 |
+
Returns:
|
| 296 |
+
Extracted information string
|
| 297 |
+
"""
|
| 298 |
+
system_prompt = f'''Given a list of some information related to the query, extract all important information from the list to answer query question.
|
| 299 |
+
Every item in the list represent one information, if the information is ambiguous (e.g. contains unknown pronoun to which it refers), do not use that information to answer the query.
|
| 300 |
+
You don't have to use all the information, only use the information that has clarity and a good basis, but try to use as many information as possible.
|
| 301 |
+
If there is no related or useful information can be extracted from the news information to answer the query question, write "No related information found." as the extracted_information output.
|
| 302 |
+
Give the extracted_information output in paragraphs form detailedly.
|
| 303 |
+
The output must be in this form: {{"extracted_information": <output paragraphs>}}
|
| 304 |
+
'''
|
| 305 |
+
|
| 306 |
+
user_prompt = f'''
|
| 307 |
+
query: {query}
|
| 308 |
+
news list: {news_list}
|
| 309 |
+
output:
|
| 310 |
+
'''
|
| 311 |
+
|
| 312 |
+
response = client.chat.completions.create(
|
| 313 |
+
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
| 314 |
+
response_format={
|
| 315 |
+
"type": "json_schema",
|
| 316 |
+
"schema": ExtractedInformation.model_json_schema(),
|
| 317 |
+
},
|
| 318 |
+
temperature = 0,
|
| 319 |
+
messages=[{
|
| 320 |
+
"role": "system",
|
| 321 |
+
"content": [
|
| 322 |
+
{"type": "text", "text":system_prompt}
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"role": "user",
|
| 327 |
+
"content": [
|
| 328 |
+
{"type": "text", "text":user_prompt},
|
| 329 |
+
]
|
| 330 |
+
}]
|
| 331 |
+
)
|
| 332 |
+
response = json.loads(response.choices[0].message.content)
|
| 333 |
+
info = response['extracted_information']
|
| 334 |
+
|
| 335 |
+
return info
|
| 336 |
+
|
| 337 |
+
def extract_information(query:str, triplet_info: str, news_info: str, language:str) -> str:
|
| 338 |
+
"""
|
| 339 |
+
Args:
|
| 340 |
+
triplet_info: Information extracted from triplets
|
| 341 |
+
news_info: Information extracted from news
|
| 342 |
+
|
| 343 |
+
Returns:
|
| 344 |
+
str: Final answer for the user
|
| 345 |
+
"""
|
| 346 |
+
client = Together(api_key = API_KEY)
|
| 347 |
+
system_prompt = f'''Given information from two sources, combine the information and make a comprehensive and informative paragraph that answer the query.
|
| 348 |
+
Make sure the output paragraph includes all crucial information and given in detail.
|
| 349 |
+
If there is no related or useful information can be extracted from the triplets to answer the query question, inform "No related information found."
|
| 350 |
+
Remember this paragraph will be shown to user, so make sure it is based on facts and data, also use appropriate language.
|
| 351 |
+
The output must be in this form and in {language} language: {{"extracted_information": <output paragraphs>}}
|
| 352 |
+
'''
|
| 353 |
+
|
| 354 |
+
user_prompt = f'''
|
| 355 |
+
query: {query}
|
| 356 |
+
first source: {triplet_info}
|
| 357 |
+
second source: {news_info}
|
| 358 |
+
extracted information:
|
| 359 |
+
'''
|
| 360 |
+
|
| 361 |
+
response = client.chat.completions.create(
|
| 362 |
+
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
| 363 |
+
response_format={
|
| 364 |
+
"type": "json_schema",
|
| 365 |
+
"schema": ExtractedInformation.model_json_schema(),
|
| 366 |
+
},
|
| 367 |
+
temperature = 0,
|
| 368 |
+
messages=[{
|
| 369 |
+
"role": "system",
|
| 370 |
+
"content": [
|
| 371 |
+
{"type": "text", "text":system_prompt}
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"role": "user",
|
| 376 |
+
"content": [
|
| 377 |
+
{"type": "text", "text":user_prompt},
|
| 378 |
+
]
|
| 379 |
+
}]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
response = json.loads(response.choices[0].message.content)
|
| 383 |
+
answer = response["extracted_information"]
|
| 384 |
+
return answer
|
| 385 |
+
|
| 386 |
+
def news_preview(links: list[str]) -> Tuple[str, str, str]:
|
| 387 |
+
try:
|
| 388 |
+
preview_contents = []
|
| 389 |
+
with get_news_db() as conn:
|
| 390 |
+
for i in links:
|
| 391 |
+
cursor = conn.cursor()
|
| 392 |
+
cursor.execute("SELECT link, title, content FROM CNNHEALTHNEWS2 WHERE link = (?)", ([i]))
|
| 393 |
+
rows = cursor.fetchall()
|
| 394 |
+
prevs = [(str(row[0]), str(row[1]), str(row[2])) for row in rows]
|
| 395 |
+
preview_contents += prevs
|
| 396 |
+
|
| 397 |
+
return preview_contents
|
| 398 |
+
|
| 399 |
+
except Exception as e:
|
| 400 |
+
print(f"Error in news_preview: {e}")
|
| 401 |
+
return ("", "", "")
|
| 402 |
+
|
| 403 |
+
class Language(BaseModel):
|
| 404 |
+
query: str = Field(description="Translated query")
|
| 405 |
+
language: str = Field(description="Query's language")
|
| 406 |
+
|
| 407 |
+
def query_language(query):
|
| 408 |
+
system_prompt = f'''Your task is to determine what language the question is written in and translate it to english if it is not in English.
|
| 409 |
+
The output must be in this form: {{query: <translated query>, language: <query's language>}}
|
| 410 |
+
'''
|
| 411 |
+
|
| 412 |
+
user_prompt = f'''
|
| 413 |
+
query: {query}
|
| 414 |
+
output:
|
| 415 |
+
'''
|
| 416 |
+
client = Together(api_key = API_KEY)
|
| 417 |
+
|
| 418 |
+
response = client.chat.completions.create(
|
| 419 |
+
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
| 420 |
+
response_format={
|
| 421 |
+
"type": "json_schema",
|
| 422 |
+
"schema": Language.model_json_schema(),
|
| 423 |
+
},
|
| 424 |
+
temperature = 0,
|
| 425 |
+
messages=[{
|
| 426 |
+
"role": "system",
|
| 427 |
+
"content": [
|
| 428 |
+
{"type": "text", "text":system_prompt}
|
| 429 |
+
]
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"role": "user",
|
| 433 |
+
"content": [
|
| 434 |
+
{"type": "text", "text":user_prompt},
|
| 435 |
+
]
|
| 436 |
+
}])
|
| 437 |
+
|
| 438 |
+
return json.loads(response.choices[0].message.content)
|
| 439 |
+
|
| 440 |
+
#API ENDPOINTS
|
| 441 |
+
|
| 442 |
+
@app.post("/api/query", response_model=QueryResponse)
|
| 443 |
+
def process_query(request: QueryRequest):
|
| 444 |
+
"""Process user query and return comprehensive response"""
|
| 445 |
+
try:
|
| 446 |
+
# Step 1: Retrieve triplets
|
| 447 |
+
query = request.query
|
| 448 |
+
query = query_language(query)
|
| 449 |
+
|
| 450 |
+
triplets_data, relations_data = retrieve_triplets(query['query'])
|
| 451 |
+
|
| 452 |
+
# Step 2: Retrieve news
|
| 453 |
+
news_list, news_links = retrieve_news(query['query'])
|
| 454 |
+
|
| 455 |
+
# Step 3: Extract information from triplets
|
| 456 |
+
triplet_info = extract_information_from_triplets(query['query'], triplets_data, relations_data)
|
| 457 |
+
|
| 458 |
+
# Step 4: Extract information from news
|
| 459 |
+
news_info = extract_information_from_news(query['query'], news_list)
|
| 460 |
+
|
| 461 |
+
# Step 5: Generate final answer
|
| 462 |
+
final_answer = extract_information(query['query'], triplet_info, news_info, query['language'])
|
| 463 |
+
|
| 464 |
+
# Convert triplets to response format
|
| 465 |
+
triplets = [TripletData(head=t[0], relation=t[1], tail=t[2]) for t in triplets_data]
|
| 466 |
+
relations = [RelationDefinition(relation=r[0], definition=r[1]) for r in relations_data]
|
| 467 |
+
|
| 468 |
+
# Convert news to response format with previews
|
| 469 |
+
news_prev = news_preview(news_links)
|
| 470 |
+
news_items = []
|
| 471 |
+
for url, title, content in news_prev:
|
| 472 |
+
preview = content[:300] + "..." if len(content) > 300 else content
|
| 473 |
+
news_items.append(NewsItem(
|
| 474 |
+
url=url,
|
| 475 |
+
content=content,
|
| 476 |
+
preview=preview,
|
| 477 |
+
title=title
|
| 478 |
+
))
|
| 479 |
+
|
| 480 |
+
# Create mini graph data for visualization
|
| 481 |
+
nodes_set = set()
|
| 482 |
+
edges = []
|
| 483 |
+
|
| 484 |
+
for triplet in triplets_data:
|
| 485 |
+
head, relation, tail = triplet
|
| 486 |
+
nodes_set.add(head)
|
| 487 |
+
nodes_set.add(tail)
|
| 488 |
+
|
| 489 |
+
# Find definition for this relation
|
| 490 |
+
definition = "No definition available"
|
| 491 |
+
for rel, def_text in relations_data:
|
| 492 |
+
if rel == relation:
|
| 493 |
+
definition = def_text
|
| 494 |
+
break
|
| 495 |
+
|
| 496 |
+
edges.append(GraphEdge(
|
| 497 |
+
source=head,
|
| 498 |
+
target=tail,
|
| 499 |
+
relation=relation,
|
| 500 |
+
definition=definition
|
| 501 |
+
))
|
| 502 |
+
|
| 503 |
+
nodes = [GraphNode(id=node, label=node) for node in nodes_set]
|
| 504 |
+
graph_data = GraphData(nodes=nodes, edges=edges)
|
| 505 |
+
|
| 506 |
+
return QueryResponse(
|
| 507 |
+
answer=final_answer,
|
| 508 |
+
triplets=triplets,
|
| 509 |
+
relations=relations,
|
| 510 |
+
news_items=news_items,
|
| 511 |
+
graph_data=graph_data
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
print(f"Error in process_query: {e}")
|
| 516 |
+
raise HTTPException(status_code=500, detail=f"Query processing failed: {str(e)}")
|
| 517 |
+
|
| 518 |
+
@app.get("/api/graph", response_model=GraphData)
|
| 519 |
+
def get_graph_data(
|
| 520 |
+
search: Optional[str] = None,
|
| 521 |
+
triplets_db: sqlite3.Connection = Depends(get_triplets_connection),
|
| 522 |
+
definitions_db: sqlite3.Connection = Depends(get_definitions_connection)
|
| 523 |
+
):
|
| 524 |
+
"""Get complete graph data with nodes and edges."""
|
| 525 |
+
|
| 526 |
+
try:
|
| 527 |
+
# Build dynamic query based on configuration
|
| 528 |
+
table = DATABASE_CONFIG["triplets_table"]
|
| 529 |
+
head_col = DATABASE_CONFIG["head_column"]
|
| 530 |
+
rel_col = DATABASE_CONFIG["relation_column"]
|
| 531 |
+
tail_col = DATABASE_CONFIG["tail_column"]
|
| 532 |
+
|
| 533 |
+
base_query = f"SELECT {head_col}, {rel_col}, {tail_col} FROM {table}"
|
| 534 |
+
params = []
|
| 535 |
+
|
| 536 |
+
if search:
|
| 537 |
+
base_query += f" WHERE {head_col} LIKE ? OR {tail_col} LIKE ? OR {rel_col} LIKE ?"
|
| 538 |
+
search_term = f"%{search}%"
|
| 539 |
+
params = [search_term, search_term, search_term]
|
| 540 |
+
|
| 541 |
+
base_query += " LIMIT 1000"
|
| 542 |
+
|
| 543 |
+
# Get triplets
|
| 544 |
+
cursor = triplets_db.execute(base_query, params)
|
| 545 |
+
triplets = cursor.fetchall()
|
| 546 |
+
|
| 547 |
+
with get_definitions_db() as conn:
|
| 548 |
+
# Get definitions
|
| 549 |
+
def_table = DATABASE_CONFIG["definitions_table"]
|
| 550 |
+
def_col = DATABASE_CONFIG["definition_column"]
|
| 551 |
+
rel_col_def = DATABASE_CONFIG["relation_column"]
|
| 552 |
+
|
| 553 |
+
def_cursor = conn.execute(f"SELECT {rel_col_def}, {def_col} FROM {def_table}")
|
| 554 |
+
definitions = {row[0]: row[1] for row in def_cursor.fetchall()}
|
| 555 |
+
|
| 556 |
+
# Build nodes and edges
|
| 557 |
+
nodes_set = set()
|
| 558 |
+
edges = []
|
| 559 |
+
|
| 560 |
+
for triple in triplets:
|
| 561 |
+
head = triple[0]
|
| 562 |
+
relation = triple[1]
|
| 563 |
+
tail = triple[2]
|
| 564 |
+
|
| 565 |
+
# Add entities to nodes set
|
| 566 |
+
nodes_set.add(head)
|
| 567 |
+
nodes_set.add(tail)
|
| 568 |
+
|
| 569 |
+
# Create edge with definition
|
| 570 |
+
edge = GraphEdge(
|
| 571 |
+
source=head,
|
| 572 |
+
target=tail,
|
| 573 |
+
relation=relation,
|
| 574 |
+
definition=definitions.get(relation, "No definition available")
|
| 575 |
+
)
|
| 576 |
+
edges.append(edge)
|
| 577 |
+
|
| 578 |
+
# Convert nodes set to list of GraphNode objects
|
| 579 |
+
nodes = [GraphNode(id=node, label=node) for node in nodes_set]
|
| 580 |
+
|
| 581 |
+
return GraphData(nodes=nodes, edges=edges)
|
| 582 |
+
|
| 583 |
+
except Exception as e:
|
| 584 |
+
print(f"Error in get_graph_data: {e}")
|
| 585 |
+
raise HTTPException(status_code=500, detail=f"Database query failed: {str(e)}")
|
| 586 |
+
|
| 587 |
+
if __name__ == "__main__":
|
| 588 |
+
print("Starting Knowledge Graph API...")
|
| 589 |
+
print(f"Triplets DB: {DATABASE_CONFIG['triplets_db']}")
|
| 590 |
+
print(f"Definitions DB: {DATABASE_CONFIG['definitions_db']}")
|
| 591 |
+
|
| 592 |
+
import uvicorn
|
| 593 |
+
port = int(os.environ.get("PORT", 8000))
|
| 594 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 595 |
+
|
| 596 |
+
|