Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import math | |
from prettytable import PrettyTable | |
def count_parameters(model): | |
table = PrettyTable(["Modules", "Parameters"]) | |
total_params = 0 | |
for name, parameter in model.named_parameters(): | |
if not parameter.requires_grad: | |
continue | |
param = parameter.numel() | |
if param > 100000: | |
table.add_row([name, param]) | |
total_params+=param | |
print(table) | |
print('total params: %.2f M' % (total_params/1000000.0)) | |
return total_params | |
def posemb_sincos_2d_xy(xy, C, temperature=10000, dtype=torch.float32, cat_coords=False): | |
device = xy.device | |
dtype = xy.dtype | |
B, S, D = xy.shape | |
assert(D==2) | |
x = xy[:,:,0] | |
y = xy[:,:,1] | |
assert (C % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' | |
omega = torch.arange(C // 4, device=device) / (C // 4 - 1) | |
omega = 1. / (temperature ** omega) | |
y = y.flatten()[:, None] * omega[None, :] | |
x = x.flatten()[:, None] * omega[None, :] | |
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) | |
pe = pe.reshape(B,S,C).type(dtype) | |
if cat_coords: | |
pe = torch.cat([pe, xy], dim=2) # B,N,C+2 | |
return pe | |
class SimplePool(): | |
def __init__(self, pool_size, version='pt'): | |
self.pool_size = pool_size | |
self.version = version | |
self.items = [] | |
if not (version=='pt' or version=='np'): | |
print('version = %s; please choose pt or np') | |
assert(False) # please choose pt or np | |
def __len__(self): | |
return len(self.items) | |
def mean(self, min_size=1): | |
if min_size=='half': | |
pool_size_thresh = self.pool_size/2 | |
else: | |
pool_size_thresh = min_size | |
if self.version=='np': | |
if len(self.items) >= pool_size_thresh: | |
return np.sum(self.items)/float(len(self.items)) | |
else: | |
return np.nan | |
if self.version=='pt': | |
if len(self.items) >= pool_size_thresh: | |
return torch.sum(self.items)/float(len(self.items)) | |
else: | |
return torch.from_numpy(np.nan) | |
def sample(self, with_replacement=True): | |
idx = np.random.randint(len(self.items)) | |
if with_replacement: | |
return self.items[idx] | |
else: | |
return self.items.pop(idx) | |
def fetch(self, num=None): | |
if self.version=='pt': | |
item_array = torch.stack(self.items) | |
elif self.version=='np': | |
item_array = np.stack(self.items) | |
if num is not None: | |
# there better be some items | |
assert(len(self.items) >= num) | |
# if there are not that many elements just return however many there are | |
if len(self.items) < num: | |
return item_array | |
else: | |
idxs = np.random.randint(len(self.items), size=num) | |
return item_array[idxs] | |
else: | |
return item_array | |
def is_full(self): | |
full = len(self.items)==self.pool_size | |
return full | |
def empty(self): | |
self.items = [] | |
def update(self, items): | |
for item in items: | |
if len(self.items) < self.pool_size: | |
# the pool is not full, so let's add this in | |
self.items.append(item) | |
else: | |
# the pool is full | |
# pop from the front | |
self.items.pop(0) | |
# add to the back | |
self.items.append(item) | |
return self.items | |
def farthest_point_sample(xyz, npoint, include_ends=False, deterministic=False): | |
""" | |
Input: | |
xyz: pointcloud data, [B, N, C], where C is probably 3 | |
npoint: number of samples | |
Return: | |
inds: sampled pointcloud index, [B, npoint] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
xyz = xyz.float() | |
inds = torch.zeros(B, npoint, dtype=torch.long).to(device) | |
distance = torch.ones(B, N).to(device) * 1e10 | |
if deterministic: | |
farthest = torch.randint(0, 1, (B,), dtype=torch.long).to(device) | |
else: | |
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) | |
batch_indices = torch.arange(B, dtype=torch.long).to(device) | |
for i in range(npoint): | |
if include_ends: | |
if i==0: | |
farthest = 0 | |
elif i==1: | |
farthest = N-1 | |
inds[:, i] = farthest | |
centroid = xyz[batch_indices, farthest, :].view(B, 1, C) | |
dist = torch.sum((xyz - centroid) ** 2, -1) | |
mask = dist < distance | |
distance[mask] = dist[mask] | |
farthest = torch.max(distance, -1)[1] | |
if npoint > N: | |
# if we need more samples, make them random | |
distance += torch.randn_like(distance) | |
return inds | |
def farthest_point_sample_py(xyz, npoint): | |
N,C = xyz.shape | |
inds = np.zeros(npoint, dtype=np.int32) | |
distance = np.ones(N) * 1e10 | |
farthest = np.random.randint(0, N, dtype=np.int32) | |
for i in range(npoint): | |
inds[i] = farthest | |
centroid = xyz[farthest, :].reshape(1,C) | |
dist = np.sum((xyz - centroid) ** 2, -1) | |
mask = dist < distance | |
distance[mask] = dist[mask] | |
farthest = np.argmax(distance, -1) | |
if npoint > N: | |
# if we need more samples, make them random | |
distance += np.random.randn(*distance.shape) | |
return inds | |