Spaces:
Sleeping
Sleeping
# %% | |
import pandas as pd | |
import pickle | |
# %% | |
# Define the file path for the pickle file | |
pickle_file_path = 'model_data.pkl' | |
# Function to save dictionaries to a pickle file | |
def save_to_pickle(sets_dict, params_dict): | |
with open(pickle_file_path, 'wb') as file: | |
pickle.dump({'sets': sets_dict, 'params': params_dict}, file) | |
# Function to load dictionaries from a pickle file | |
def load_from_pickle(): | |
with open(pickle_file_path, 'rb') as file: | |
data = pickle.load(file) | |
return data['sets'], data['params'] | |
def load_data_from_excel(url_excel, write_to_pickle_flag = True): | |
# Timesteps | |
df_excel = pd.read_excel(url_excel, sheet_name='Timesteps_All', header=None) | |
t = pd.Index(df_excel.iloc[:, 0], name='t') | |
# Technologies | |
df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
i = pd.Index(df_excel.iloc[:, 0], name='i') | |
df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
iConv = pd.Index(df_excel.iloc[0:6, 2], name='iConv') # changed to 6 from 7 | |
df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
iRes = pd.Index(df_excel.iloc[0:4, 4], name='iRes') | |
df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
iSto = pd.Index(df_excel.iloc[0:1, 6], name='iSto') | |
# df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
# iPtG = pd.Index(df_excel.iloc[0:1, 8], name='iPtG') | |
# df_excel = pd.read_excel(url_excel, sheet_name='Technologies') | |
# iHyRes = pd.Index(df_excel.iloc[0:1, 10], name='iHyRes') | |
# Parameters | |
l_co2 = pd.read_excel(url_excel, sheet_name='CO2_Cap').iloc[0,0] | |
p_co2 = 0 | |
dt = 1 | |
# Demand | |
df_excel= pd.read_excel(url_excel, sheet_name = 'Demand') | |
#df_melt = pd.melt(df_excel, id_vars='Zeit') | |
df_excel = df_excel.rename(columns = {'Zeitschritte':'t', 'Unnamed: 1':'Nachfrage'}) | |
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('t') | |
D_t = df_excel.iloc[:,0].to_xarray() | |
## Efficiencies | |
df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency') | |
df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Wirkungsgrad'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
eff_i = df_excel.iloc[:,0].to_xarray() | |
## Lifespan | |
df_excel = pd.read_excel(url_excel, sheet_name = 'Lifespan') | |
df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Nutzungsdauer'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
life_i = df_excel.iloc[:,0].to_xarray() | |
## Variable costs | |
# Fuel costs | |
df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts') | |
df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'Brennstoffkosten'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
c_fuel_i = df_excel.iloc[:,0].to_xarray() | |
# Apply slider value | |
#c_fuel_i.loc[dict(i = 'Fossil Gas')] = price_gas | |
#c_fuel_i.loc[dict(i = 'H2')] = price_h2 | |
# Other var. costs | |
df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts') | |
df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'Sonstige Variable Kosten'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
c_other_i = df_excel.iloc[:,0].to_xarray() | |
# Investment costs | |
df_excel = pd.read_excel(url_excel, sheet_name = 'InvCosts') | |
df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Investitionen'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
interest_rate = 0.07 | |
annuity_factor_i = (interest_rate * (1 + interest_rate)**life_i) / ((1 + interest_rate)**life_i - 1) | |
c_inv_i = df_excel.iloc[:,0].to_xarray()*1000*annuity_factor_i | |
# Emission factor | |
df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor') | |
df_excel = df_excel.rename(columns = {'Konventionell':'i', 'Unnamed: 1':'CO2-Faktor'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
co2_factor_i = df_excel.iloc[:,0].to_xarray() | |
## Calculation of variable costs | |
c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv) | |
# RES capacity factors | |
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1]) | |
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR']) | |
df_excel = pd.read_excel(url_excel, sheet_name = 'RES') | |
df_excel = df_excel.set_index(['Zeitschritte']) | |
df_test = df_excel | |
df_excel = df_excel.stack() | |
#df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'}) | |
df_test2 = df_excel | |
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
#df_excel = df_excel.fillna(0) | |
#df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0]) | |
#df_test.index = df_test.index.set_names(['t','i']) | |
s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Zeitschritte':'t'}) | |
#s_t_r_iRes = df_excel.iloc[:,0].to_xarray() | |
# Base capacities | |
df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap') | |
df_excel = df_excel.rename(columns = {'Alle':'i', 'Unnamed: 1':'Installierte Kapazität'}) | |
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
K_0_i = df_excel.iloc[:,0].to_xarray() | |
# Energy-to-power ratio storages | |
df_excel = pd.read_excel(url_excel, sheet_name = 'E2P') | |
df_excel = df_excel.rename(columns = {'Speicher':'i', 'Unnamed: 1':'E2P-Ratio'}) | |
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left') | |
df_excel = df_excel.fillna(0) | |
df_excel = df_excel.set_index('i') | |
e2p_iSto = df_excel.iloc[:,0].to_xarray() | |
# # Inflow for hydro reservoir | |
# df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow') | |
# df_excel = df_excel.rename(columns = {'Zeitschritte':'t', 'Staudamm':'Zufluss'}) | |
# df_excel = df_excel.fillna(0) | |
# df_excel = df_excel.set_index('t') | |
# h_t = df_excel.iloc[:,0].to_xarray() | |
sets_dict = {} | |
params_dict = {} | |
# Append parameters to the dictionary | |
sets_dict['t'] = t | |
sets_dict['i'] = i | |
sets_dict['iSto'] = iSto | |
sets_dict['iConv'] = iConv | |
# sets_dict['iPtG'] = iPtG | |
sets_dict['iRes'] = iRes | |
# sets_dict['iHyRes'] = iHyRes | |
# Append parameters to the dictionary | |
params_dict['l_co2'] = l_co2 | |
params_dict['p_co2'] = p_co2 | |
params_dict['dt'] = dt | |
params_dict['D_t'] = D_t | |
params_dict['eff_i'] = eff_i | |
params_dict['life_i'] = life_i | |
params_dict['c_fuel_i'] = c_fuel_i | |
params_dict['c_other_i'] = c_other_i | |
params_dict['c_inv_i'] = c_inv_i | |
params_dict['co2_factor_i'] = co2_factor_i | |
params_dict['c_var_i'] = c_var_i | |
params_dict['s_t_r_iRes'] = s_t_r_iRes | |
params_dict['K_0_i'] = K_0_i | |
params_dict['e2p_iSto'] = e2p_iSto | |
# params_dict['h_t'] = h_t | |
if write_to_pickle_flag: | |
save_to_pickle(sets_dict, params_dict) | |
return sets_dict, params_dict | |
# %% | |
# # Example usage: | |
# url_excel = "Input_Jahr_2021.xlsx" # Replace with your actual file path | |
# limit_co2 = 0.5 | |
# price_co2 = 50 | |
# price_gas = 3 | |
# price_h2 = 5 | |
# sets, params = load_data_from_excel(url_excel,write_to_pickle_flag=True) | |
# # %% | |
# sets, params = load_data_from_excel(url_excel,load_from_pickle_flag=True) | |
# # %% | |
if __name__ == "__main__": | |
url_excel = r'Input_Jahr_2021.xlsx' | |
sets_dict, params_dict= load_data_from_excel(url_excel, write_to_pickle_flag= False) |