EEW_model_1 / app.py
ConniKLu's picture
Upload 3 files
1bc3235 verified
raw
history blame
15.9 kB
# %%
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from numpy import arange
import xarray as xr
import highspy
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
import streamlit as st
import sourced as src
import numpy as np
## Setting
write_pickle_from_standard_excel = True
st.set_page_config(layout="wide")
# you can create columns to better manage the flow of your page
# this command makes 3 columns of equal width
col1, col2, col3, col4 = st.columns(4)
col1.header("Data Input")
col4.header("Download Results")
# Color dictionary for figures
color_dict = {'Biomass': 'lightgreen',
'Lignite': 'brown',
'Fossil Gas': 'grey',
'Fossil Hard coal': 'darkgrey',
'Fossil Oil': 'maroon',
'RoR': 'aquamarine',
'Hydro Water Reservoir': 'azure',
'Nuclear': 'orange',
'PV': 'yellow',
'WindOff': 'darkblue',
'WindOn': 'green',
'H2': 'crimson',
'Pumped Hydro Storage': 'lightblue',
'Battery storages': 'red',
'Electrolyzer': 'olive'}
# %%
with col1:
with open('Input_Jahr_2021.xlsx', 'rb') as f:
st.download_button('Download Excel Template', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream'
#url_excel = r'Input_Jahr_2021.xlsx'
url_excel = st.file_uploader(label = 'Excel Upload')
if url_excel == None:
if write_pickle_from_standard_excel:
url_excel = r'Input_Jahr_2021.xlsx'
sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag= True)
sets_dict, params_dict = src.load_from_pickle()
with col4:
st.write('Running with standard data')
else:
sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
with col4:
st.write('Running with user data')
# # %%
def timstep_aggregate(time_steps_aggregate, xr ):
return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])
#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)
# %%
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)
# %%
#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)
# Unpack sets_dict into the workspace
t = sets_dict['t']
t_original = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
iHyRes = sets_dict['iHyRes']
# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']
eff_i = params_dict['eff_i']
life_i = params_dict['life_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
#c_var_i = params_dict['c_var_i']
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']
# Sliders and input boxes for parameters
with col2:
# Slider for CO2 limit [mio. t]
l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)
# Slider for H2 price / usevalue [€/MWH_th]
price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Hydrogen price [€/MWh]", step=10)
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Lignite']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
dt = st.number_input(label="Length of timesteps [int]", min_value=1, max_value=len(t), value=6, help="Enter only integers between 1 and 8760 (or 8784 for leap years).")
with col3:
# Slider for CO2 limit [mio. t]
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Fossil Hard coal', 'Fossil Oil','Fossil Gas']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
technologies_invest = st.multiselect(label='Technologies for investment', options=i, default=['Lignite','Fossil Gas','Fossil Hard coal','Fossil Oil','PV','WindOff','WindOn','H2','Pumped Hydro Storage','Battery storages'])
technologies_no_invest = [x for x in i if x not in technologies_invest]
# Aggregate time series
D_t = timstep_aggregate(dt,params_dict['D_t'])
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
h_t = timstep_aggregate(dt,params_dict['h_t'])
t = D_t.get_index('t')
partial_year_factor = (8760/len(t))/dt
#time_steps_aggregate = 6
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
price_co2 = 0
# Aggregate time series
#D_t = timstep_aggregate(dt,params_dict['D_t'])
#s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
#h_t = timstep_aggregate(dt,params_dict['h_t'])
#t = D_t.get_index('t')
#partial_year_factor = (8760/len(t))/dt
#technologies_no_invest = st.multiselect(label='Technology invest', options=i)
#technologies_no_invest = ['Electrolyzer','Biomass','RoR','Hydro Water Reservoir','Nuclear']
# %%
### Variables
m = Model()
C_tot = m.add_variables(name = 'C_tot') # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0) # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0) # Investment costs
K = m.add_variables(coords = [i], name = 'K', lower = 0) # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0) # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0) # RES curtailment
y_curt = m.add_variables(coords = [t,i], name = 'y_curt', lower = 0)
y_h2 = m.add_variables(coords = [t,i], name = 'y_h2', lower = 0)
## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)
## Costs terms for objective function
# Operational costs minus revenue for produced hydrogen
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt - (y_h2.sel(i = iPtG) * price_h2).sum() * dt == C_op, name = 'C_op_sum')
# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')
## Load serving
loadserve_t = m.add_constraints((((y ).sum(dims = 'i') - y_ch.sum(dims = 'i')) * dt == D_t.sel(t = t) * dt), name = 'load')
## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')
## Maximum capacity limit
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest')
## Prevent power production by PtG
no_power_prod_iPtG_t = m.add_constraints((y.sel(i = iPtG) <= 0), name = 'prevent_ptg_prod')
## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha')
## Maximum electrolyzer capacity
ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG) <= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')
## PtG H2 production
h2_prod_iPtG_t = m.add_constraints(y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG) == y_h2.sel(i = iPtG), name = 'ptg_h2_prod')
## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) + y_curt.sel(i = iRes) == s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name = 'infeed')
## Maximum filling level restriction storage power plant
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')
## Filling level restriction hydro reservoir
filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')
## Filling level restriction other storages
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')
## CO2 limit
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000 , name = 'CO2_limit')
# %%
m.solve(solver_name = 'highs')
st.markdown("---")
colb1, colb2 = st.columns(2)
# %%
#c_var_i.to_dataframe(name='VarCosts')
# %%
# Installed Cap
# Assuming df_excel has columns 'All' and 'Capacities'
fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
y='i', x='K', orientation='h', title='Total Installed Capacities [MW]', color='i')
#fig
# %%
total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values)
total_costs_rounded = round(total_costs/1e9, 2)
df_total_costs = pd.DataFrame({'Total costs':[total_costs]})
with colb1:
st.write('Total costs: ' + str(total_costs_rounded) + ' bn. €')
# %%
#df_Co2_price = pd.DataFrame({'CO2_Price: ':[float(m.constraints['CO2_limit'].dual.values) * (-1)]})
CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1)
CO2_price_rounded = round(CO2_price, 2)
df_CO2_price = pd.DataFrame({'CO2 price':[CO2_price]})
with colb2:
#st.write(str(df_Co2_price))
st.write('CO2 price: ' + str(CO2_price_rounded) + ' €/t')
# %%
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='New Capacities [MW]', color='i', color_discrete_map=color_dict)
with colb1:
fig
# %%
#add pie chart which shows new capacities
#round number of new capacities
df_new_capacities_rounded = m.solution['K'].round(0).to_dataframe()
#drop all technologies with K<= 0
df_new_capacities_rounded = df_new_capacities_rounded[df_new_capacities_rounded["K"] > 0].reset_index()
total_k_sum = df_new_capacities_rounded["K"].sum()
#df_new_capacities_rounded["percentage"] = df_new_capacities_rounded["K"].apply(lambda x: (x/total_k_sum)*100).abs().round(2)
fig = px.pie(df_new_capacities_rounded, names='i', values='K', title='New Capacities [MW] as pie chart',
color='i', color_discrete_map=color_dict)
with colb1:
fig
# %%
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Production [MW]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb2:
fig
# %%
#Add pie chart of total production per technology type in GWh(divide by 1000)
df_production_sum = (df_production.groupby('i')['y'].sum() * dt / 1000 ).round(0).sort_values(ascending=False).reset_index()
fig = px.pie(df_production_sum, names="i", values='y', title='Total Production [GWh] as pie chart',
color='i', color_discrete_map=color_dict)
with colb2:
fig
# %%
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
#df_price['dual'] = df_price['dual']
# %%
fig = px.line(df_price, y='dual', x='t', title='Electricity prices [€/MWh]', range_y=[0,250])
with colb1:
fig
# %%
df_sorted_price = df_price["dual"].repeat(dt).sort_values(ascending=False).reset_index(drop=True)/int(dt)
fig = px.line(y=df_sorted_price, x=df_sorted_price.index, title='Price duration curve [€/MWh]', labels={"x": "Hours of the year"},range_y=[0,250])
with colb1:
fig
# %%
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1)
# %%
fig = px.line(df_contr_marg, y='dual', x='t',title='Contribution margin [€]', color='i', range_y=[0,250], color_discrete_map=color_dict)
with colb2:
fig
# %%
# curtailment
df_curtailment = m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index()
fig = px.area(m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index(), y='y_curt', x='t', title='Curtailment [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb1:
fig
# %%
df_charging = m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index()
fig = px.area(m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index(), y='y_ch', x='t', title='Storage charging [MWh]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb2:
fig
# %%
df_h2_prod = m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index()
fig = px.area(m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index(), y='y_h2', x='t', title='Hydrogen production [MWh_th]', color='i', color_discrete_map=color_dict)
fig.update_traces(line=dict(width=0))
fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color))
with colb2:
fig
# %%
((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()
# %%
import pandas as pd
from io import BytesIO
#from pyxlsb import open_workbook as open_xlsb
import streamlit as st
import xlsxwriter
# %%
output = BytesIO()
# ##
def disaggregate_df(df):
if not "t" in list(df.columns):
return df
#df_repeated = df.iloc[idx_repeat,:].reset_index(drop = True).drop('t', axis = 1)
df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True)
# %%
df_output = df.merge(df_t_all,on = 't').drop('t',axis = 1).rename({'t_all':'t'}, axis = 1)
# last column to first column
cols = list(df_output.columns)
cols = [cols[-1]] + cols[:-1]
df_output = df_output[cols]
return df_output.sort_values('t')
# Create a Pandas Excel writer using XlsxWriter as the engine
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
# Write each DataFrame to a different sheet
disaggregate_df(df_total_costs).to_excel(writer, sheet_name='Total costs', index=False)
disaggregate_df(df_CO2_price).to_excel(writer, sheet_name='CO2 price', index=False)
disaggregate_df(df_price).to_excel(writer, sheet_name='Prices', index=False)
disaggregate_df(df_contr_marg).to_excel(writer, sheet_name='Contribution Margin', index=False)
disaggregate_df(df_new_capacities).to_excel(writer, sheet_name='Capacities', index=False)
disaggregate_df(df_production).to_excel(writer, sheet_name='Production', index=False)
disaggregate_df(df_charging).to_excel(writer, sheet_name='Charging', index=False)
disaggregate_df(D_t.to_dataframe().reset_index()).to_excel(writer, sheet_name='Demand', index=False)
disaggregate_df(df_curtailment).to_excel(writer, sheet_name='Curtailment', index=False)
disaggregate_df(df_h2_prod).to_excel(writer, sheet_name='H2 production', index=False)
with col4:
st.download_button(
label="Download Excel workbook Results",
data=output.getvalue(),
file_name="workbook.xlsx",
mime="application/vnd.ms-excel"
)
# %%