Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501 | |
| Wrap some nn modules to support empty tensor input. Currently, these wrappers | |
| are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask | |
| heads are trained on only positive RoIs. | |
| """ | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn.modules.utils import _pair, _triple | |
| from .registry import CONV_LAYERS, UPSAMPLE_LAYERS | |
| if torch.__version__ == 'parrots': | |
| TORCH_VERSION = torch.__version__ | |
| else: | |
| # torch.__version__ could be 1.3.1+cu92, we only need the first two | |
| # for comparison | |
| TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2]) | |
| def obsolete_torch_version(torch_version, version_threshold): | |
| return torch_version == 'parrots' or torch_version <= version_threshold | |
| class NewEmptyTensorOp(torch.autograd.Function): | |
| def forward(ctx, x, new_shape): | |
| ctx.shape = x.shape | |
| return x.new_empty(new_shape) | |
| def backward(ctx, grad): | |
| shape = ctx.shape | |
| return NewEmptyTensorOp.apply(grad, shape), None | |
| class Conv2d(nn.Conv2d): | |
| def forward(self, x): | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): | |
| out_shape = [x.shape[0], self.out_channels] | |
| for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size, | |
| self.padding, self.stride, self.dilation): | |
| o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 | |
| out_shape.append(o) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| if self.training: | |
| # produce dummy gradient to avoid DDP warning. | |
| dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + dummy | |
| else: | |
| return empty | |
| return super().forward(x) | |
| class Conv3d(nn.Conv3d): | |
| def forward(self, x): | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): | |
| out_shape = [x.shape[0], self.out_channels] | |
| for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size, | |
| self.padding, self.stride, self.dilation): | |
| o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 | |
| out_shape.append(o) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| if self.training: | |
| # produce dummy gradient to avoid DDP warning. | |
| dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + dummy | |
| else: | |
| return empty | |
| return super().forward(x) | |
| class ConvTranspose2d(nn.ConvTranspose2d): | |
| def forward(self, x): | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): | |
| out_shape = [x.shape[0], self.out_channels] | |
| for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size, | |
| self.padding, self.stride, | |
| self.dilation, self.output_padding): | |
| out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| if self.training: | |
| # produce dummy gradient to avoid DDP warning. | |
| dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + dummy | |
| else: | |
| return empty | |
| return super().forward(x) | |
| class ConvTranspose3d(nn.ConvTranspose3d): | |
| def forward(self, x): | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): | |
| out_shape = [x.shape[0], self.out_channels] | |
| for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size, | |
| self.padding, self.stride, | |
| self.dilation, self.output_padding): | |
| out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| if self.training: | |
| # produce dummy gradient to avoid DDP warning. | |
| dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + dummy | |
| else: | |
| return empty | |
| return super().forward(x) | |
| class MaxPool2d(nn.MaxPool2d): | |
| def forward(self, x): | |
| # PyTorch 1.9 does not support empty tensor inference yet | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): | |
| out_shape = list(x.shape[:2]) | |
| for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size), | |
| _pair(self.padding), _pair(self.stride), | |
| _pair(self.dilation)): | |
| o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 | |
| o = math.ceil(o) if self.ceil_mode else math.floor(o) | |
| out_shape.append(o) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| return empty | |
| return super().forward(x) | |
| class MaxPool3d(nn.MaxPool3d): | |
| def forward(self, x): | |
| # PyTorch 1.9 does not support empty tensor inference yet | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)): | |
| out_shape = list(x.shape[:2]) | |
| for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size), | |
| _triple(self.padding), | |
| _triple(self.stride), | |
| _triple(self.dilation)): | |
| o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 | |
| o = math.ceil(o) if self.ceil_mode else math.floor(o) | |
| out_shape.append(o) | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| return empty | |
| return super().forward(x) | |
| class Linear(torch.nn.Linear): | |
| def forward(self, x): | |
| # empty tensor forward of Linear layer is supported in Pytorch 1.6 | |
| if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)): | |
| out_shape = [x.shape[0], self.out_features] | |
| empty = NewEmptyTensorOp.apply(x, out_shape) | |
| if self.training: | |
| # produce dummy gradient to avoid DDP warning. | |
| dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + dummy | |
| else: | |
| return empty | |
| return super().forward(x) | |