Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.autograd import Function | |
| from ..utils import ext_loader | |
| ext_module = ext_loader.load_ext('_ext', ['knn_forward']) | |
| class KNN(Function): | |
| r"""KNN (CUDA) based on heap data structure. | |
| Modified from `PAConv <https://github.com/CVMI-Lab/PAConv/tree/main/ | |
| scene_seg/lib/pointops/src/knnquery_heap>`_. | |
| Find k-nearest points. | |
| """ | |
| def forward(ctx, | |
| k: int, | |
| xyz: torch.Tensor, | |
| center_xyz: torch.Tensor = None, | |
| transposed: bool = False) -> torch.Tensor: | |
| """ | |
| Args: | |
| k (int): number of nearest neighbors. | |
| xyz (Tensor): (B, N, 3) if transposed == False, else (B, 3, N). | |
| xyz coordinates of the features. | |
| center_xyz (Tensor, optional): (B, npoint, 3) if transposed == | |
| False, else (B, 3, npoint). centers of the knn query. | |
| Default: None. | |
| transposed (bool, optional): whether the input tensors are | |
| transposed. Should not explicitly use this keyword when | |
| calling knn (=KNN.apply), just add the fourth param. | |
| Default: False. | |
| Returns: | |
| Tensor: (B, k, npoint) tensor with the indices of | |
| the features that form k-nearest neighbours. | |
| """ | |
| assert (k > 0) & (k < 100), 'k should be in range(0, 100)' | |
| if center_xyz is None: | |
| center_xyz = xyz | |
| if transposed: | |
| xyz = xyz.transpose(2, 1).contiguous() | |
| center_xyz = center_xyz.transpose(2, 1).contiguous() | |
| assert xyz.is_contiguous() # [B, N, 3] | |
| assert center_xyz.is_contiguous() # [B, npoint, 3] | |
| center_xyz_device = center_xyz.get_device() | |
| assert center_xyz_device == xyz.get_device(), \ | |
| 'center_xyz and xyz should be put on the same device' | |
| if torch.cuda.current_device() != center_xyz_device: | |
| torch.cuda.set_device(center_xyz_device) | |
| B, npoint, _ = center_xyz.shape | |
| N = xyz.shape[1] | |
| idx = center_xyz.new_zeros((B, npoint, k)).int() | |
| dist2 = center_xyz.new_zeros((B, npoint, k)).float() | |
| ext_module.knn_forward( | |
| xyz, center_xyz, idx, dist2, b=B, n=N, m=npoint, nsample=k) | |
| # idx shape to [B, k, npoint] | |
| idx = idx.transpose(2, 1).contiguous() | |
| if torch.__version__ != 'parrots': | |
| ctx.mark_non_differentiable(idx) | |
| return idx | |
| def backward(ctx, a=None): | |
| return None, None, None | |
| knn = KNN.apply | |