EUNSEO56 commited on
Commit
24e102e
1 Parent(s): dfabd16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -20
app.py CHANGED
@@ -1,39 +1,131 @@
1
  import gradio as gr
 
 
 
2
  import numpy as np
3
  from PIL import Image
4
  import tensorflow as tf
5
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
6
 
7
- # Segformer 모델과 관련 객체를 초기화
8
- feature_extractor = SegformerFeatureExtractor.from_pretrained("nickmuchi/segformer-b4-finetuned-segments-sidewalk")
9
- model = TFSegformerForSemanticSegmentation.from_pretrained("nickmuchi/segformer-b4-finetuned-segments-sidewalk", from_pt=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- def perform_semantic_segmentation(input_img):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  input_img = Image.fromarray(input_img)
13
 
14
- # 이미지를 처리하고 모델에 전달
15
  inputs = feature_extractor(images=input_img, return_tensors="tf")
16
  outputs = model(**inputs)
17
  logits = outputs.logits
18
 
19
- # 모델 출력을 처리하여 시맨틱 분할 결과를 얻음
20
  logits = tf.transpose(logits, [0, 2, 3, 1])
21
- logits = tf.image.resize(logits, input_img.size[::-1])
 
 
22
  seg = tf.math.argmax(logits, axis=-1)[0]
23
 
24
- return input_img, seg.numpy()
 
 
 
 
25
 
26
- def segformer_interface(input_image):
27
- original_image, segmentation_map = perform_semantic_segmentation(input_image)
28
- return original_image, segmentation_map
 
 
 
 
 
 
 
 
 
29
 
30
- # Gradio 데모 구성
31
- demo = gr.Interface(
32
- fn=segformer_interface,
33
- inputs=gr.Image(shape=(400, 600)),
34
- outputs=[gr.Image(type="plot"), gr.Image(type="plot")], # 원본 이미지 및 시맨틱 분할 맵을 출력
35
- examples=["side-1.jpg", "side-2.jpg", "side-3.jpg"],
36
- allow_flagging='never'
37
- )
38
 
39
- demo.launch()
 
1
  import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
  import numpy as np
6
  from PIL import Image
7
  import tensorflow as tf
8
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nickmuchi/segformer-b4-finetuned-segments-sidewalk"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nickmuchi/segformer-b4-finetuned-segments-sidewalk",
15
+ from_pt=True
16
+
17
+ )
18
+
19
+ def ade_palette():
20
+ """ADE20K palette that maps each class to RGB values."""
21
+ return [
22
+ [204, 87, 92],
23
+ [112, 185, 212],
24
+ [45, 189, 106],
25
+ [234, 123, 67],
26
+ [78, 56, 123],
27
+ [210, 32, 89],
28
+ [90, 180, 56],
29
+ [155, 102, 200],
30
+ [33, 147, 176],
31
+ [255, 183, 76],
32
+ [67, 123, 89],
33
+ [190, 60, 45],
34
+ [134, 112, 200],
35
+ [56, 45, 189],
36
+ [200, 56, 123],
37
+ [87, 92, 204],
38
+ [120, 56, 123],
39
+ [45, 78, 123],
40
+ [156, 200, 56],
41
+ [32, 90, 210],
42
+ [56, 123, 67],
43
+ [180, 56, 123],
44
+ [123, 67, 45],
45
+ [45, 134, 200],
46
+ [67, 56, 123],
47
+ [78, 123, 67],
48
+ [32, 210, 90],
49
+ [45, 56, 189],
50
+ [123, 56, 123],
51
+ [56, 156, 200],
52
+ [189, 56, 45],
53
+ [112, 200, 56],
54
+ [56, 123, 45],
55
+ [200, 32, 90],
56
+ [255, 255, 0],
57
+ ]
58
+
59
+ labels_list = []
60
+
61
+ with open(r'labels.txt', 'r') as fp:
62
+ for line in fp:
63
+ labels_list.append(line[:-1])
64
+
65
+ colormap = np.asarray(ade_palette())
66
+
67
+
68
+ def label_to_color_image(label):
69
+ if label.ndim != 2:
70
+ raise ValueError("Expect 2-D input label")
71
 
72
+ if np.max(label) >= len(colormap):
73
+ raise ValueError("label value too large.")
74
+ return colormap[label]
75
+
76
+ def draw_plot(pred_img, seg):
77
+ fig = plt.figure(figsize=(20, 15))
78
+
79
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
80
+
81
+ plt.subplot(grid_spec[0])
82
+ plt.imshow(pred_img)
83
+ plt.axis('off')
84
+ LABEL_NAMES = np.asarray(labels_list)
85
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
86
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
87
+
88
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
89
+ ax = plt.subplot(grid_spec[1])
90
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
91
+ ax.yaxis.tick_right()
92
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
93
+ plt.xticks([], [])
94
+ ax.tick_params(width=0.0, labelsize=25)
95
+ return fig
96
+
97
+
98
+ def sepia(input_img):
99
  input_img = Image.fromarray(input_img)
100
 
 
101
  inputs = feature_extractor(images=input_img, return_tensors="tf")
102
  outputs = model(**inputs)
103
  logits = outputs.logits
104
 
 
105
  logits = tf.transpose(logits, [0, 2, 3, 1])
106
+ logits = tf.image.resize(
107
+ logits, input_img.size[::-1]
108
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
109
  seg = tf.math.argmax(logits, axis=-1)[0]
110
 
111
+ color_seg = np.zeros(
112
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
113
+ ) # height, width, 3
114
+ for label, color in enumerate(colormap):
115
+ color_seg[seg.numpy() == label, :] = color
116
 
117
+ # Show image + mask
118
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
119
+ pred_img = pred_img.astype(np.uint8)
120
+
121
+ fig = draw_plot(pred_img, seg)
122
+ return fig
123
+
124
+ demo = gr.Interface(fn=sepia,
125
+ inputs=gr.Image(shape=(400, 600)),
126
+ outputs=['plot'],
127
+ examples=["side-1.jpg", "side-2.jpg", "side-3.jpg", "side-4.jpg", "side-5.jpg", "side-6.jpg"],
128
+ allow_flagging='never')
129
 
 
 
 
 
 
 
 
 
130
 
131
+ demo.launch()