Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| model_name="laiBatool/laiba-spam-classifier-bert", | |
| def load_model(): | |
| tokenizer=AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| def predict(text): | |
| inputs = tokenizer(text, return_tensort="pt", truncation=True, padding=True) | |
| outputs = model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim = 1) | |
| pred = torch.argmax(probs, dim=1).item() | |
| return "Spam" if pred == 1 else "Not Spam" | |
| st.title("Spam Detector - BERT") | |
| st.write("paste an email message and check if it's spam.") | |
| user_input = st.text_area("Email Content", height=200) | |
| if st.button("Clasify"): | |
| if not user_input.strip(): | |
| st.warning("Please enter some words") | |
| else: | |
| result = predict(user_input) | |
| st.success(f"Prediction: {result}") | |