|
import streamlit as st |
|
import pandas as pd |
|
from sklearn import datasets |
|
from sklearn.ensemble import RandomForestClassifier |
|
|
|
st.write(""" |
|
# Simple Iris Flower Prediction App |
|
|
|
This app predicts the **Iris flower** type! |
|
""") |
|
|
|
st.sidebar.header('User Input Parameters') |
|
|
|
def user_input_features(): |
|
sepal_length = st.sidebar.slider('Sepal length', 4.3, 7.9, 5.4) |
|
sepal_width = st.sidebar.slider('Sepal width', 2.0, 4.4, 3.4) |
|
petal_length = st.sidebar.slider('Petal length', 1.0, 6.9, 1.3) |
|
petal_width = st.sidebar.slider('Petal width', 0.1, 2.5, 0.2) |
|
data = {'sepal_length': sepal_length, |
|
'sepal_width': sepal_width, |
|
'petal_length': petal_length, |
|
'petal_width': petal_width} |
|
features = pd.DataFrame(data, index=[0]) |
|
return features |
|
|
|
df = user_input_features() |
|
|
|
st.subheader('User Input parameters') |
|
st.write(df) |
|
|
|
iris = datasets.load_iris() |
|
X = iris.data |
|
Y = iris.target |
|
|
|
clf = RandomForestClassifier() |
|
clf.fit(X, Y) |
|
|
|
prediction = clf.predict(df) |
|
prediction_proba = clf.predict_proba(df) |
|
|
|
st.subheader('Class labels and their corresponding index number') |
|
st.write(iris.target_names) |
|
|
|
st.subheader('Prediction') |
|
st.write(iris.target_names[prediction]) |
|
|
|
|
|
st.subheader('Prediction Probability') |
|
st.write(prediction_proba) |
|
|