Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import gradio as gr | |
from model import Model | |
repo_dir = pathlib.Path(__file__).parent | |
def create_demo(): | |
DESCRIPTION = '# [ELITE](https://github.com/csyxwei/ELITE)' | |
model = Model() | |
with gr.Blocks(css=repo_dir / 'style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
image = gr.Image(label='Input', tool='sketch', type='pil') | |
gr.Markdown('Draw a mask on your object.') | |
prompt = gr.Text( | |
label='Prompt', | |
placeholder='e.g. "A photo of S", "S wearing sunglasses"', | |
info='Use "S" for your concept.') | |
lambda_ = gr.Slider( | |
label='Lambda', | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.6, | |
info= | |
'The larger the lambda, the more consistency between the generated image and the input image, but less editability.' | |
) | |
run_button = gr.Button('Run') | |
with gr.Accordion(label='Advanced options', open=False): | |
seed = gr.Slider( | |
label='Seed', | |
minimum=-1, | |
maximum=1000000, | |
step=1, | |
value=-1, | |
info= | |
'If set to -1, a different seed will be used each time.' | |
) | |
guidance_scale = gr.Slider(label='Guidance scale', | |
minimum=0, | |
maximum=50, | |
step=0.1, | |
value=5.0) | |
num_steps = gr.Slider( | |
label='Steps', | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, | |
info= | |
'In the paper, the number of steps is set to 100, but in this demo the default value is 20 to reduce inference time.' | |
) | |
with gr.Column(): | |
result = gr.Image(label='Result') | |
paths = sorted([ | |
path.as_posix() | |
for path in (repo_dir / 'ELITE/test_datasets').glob('*') | |
if 'bg' not in path.stem | |
]) | |
gr.Examples(examples=paths, inputs=image, examples_per_page=20) | |
inputs = [ | |
image, | |
prompt, | |
seed, | |
guidance_scale, | |
lambda_, | |
num_steps, | |
] | |
prompt.submit(fn=model.run, inputs=inputs, outputs=result) | |
run_button.click(fn=model.run, inputs=inputs, outputs=result) | |
return demo | |
if __name__ == '__main__': | |
demo = create_demo() | |
demo.queue(api_open=False).launch() | |