sketch-to-BPMN / app.py
BenjiELCA's picture
.
89a6f01
raw
history blame
15.5 kB
import streamlit as st
import streamlit.components.v1 as components
from PIL import Image
import torch
from torchvision.transforms import functional as F
from PIL import Image, ImageEnhance
from htlm_webpage import display_bpmn_xml
import gc
import psutil
from OCR import text_prediction, filter_text, mapping_text, rescale
from train import prepare_model
from utils import draw_annotations, create_loader, class_dict, arrow_dict, object_dict
from toXML import calculate_pool_bounds, add_diagram_elements
from pathlib import Path
from toXML import create_bpmn_object, create_flow_element
import xml.etree.ElementTree as ET
import numpy as np
from display import draw_stream
from eval import full_prediction
from streamlit_image_comparison import image_comparison
from xml.dom import minidom
from streamlit_cropper import st_cropper
from streamlit_drawable_canvas import st_canvas
from utils import find_closest_object
from train import get_faster_rcnn_model, get_arrow_model
import gdown
def get_memory_usage():
process = psutil.Process()
mem_info = process.memory_info()
return mem_info.rss / (1024 ** 2) # Return memory usage in MB
def clear_memory():
st.session_state.clear()
gc.collect()
# Function to read XML content from a file
def read_xml_file(filepath):
""" Read XML content from a file """
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
# Function to modify bounding box positions based on the given sizes
def modif_box_pos(pred, size):
for i, (x1, y1, x2, y2) in enumerate(pred['boxes']):
center = [(x1 + x2) / 2, (y1 + y2) / 2]
label = class_dict[pred['labels'][i]]
if label in size:
pred['boxes'][i] = [center[0] - size[label][0] / 2, center[1] - size[label][1] / 2, center[0] + size[label][0] / 2, center[1] + size[label][1] / 2]
return pred
# Function to create a BPMN XML file from prediction results
def create_XML(full_pred, text_mapping, scale):
namespaces = {
'bpmn': 'http://www.omg.org/spec/BPMN/20100524/MODEL',
'bpmndi': 'http://www.omg.org/spec/BPMN/20100524/DI',
'di': 'http://www.omg.org/spec/DD/20100524/DI',
'dc': 'http://www.omg.org/spec/DD/20100524/DC',
'xsi': 'http://www.w3.org/2001/XMLSchema-instance'
}
size_elements = {
'start': (36, 36),
'task': (100, 80),
'message': (36, 36),
'messageEvent': (36, 36),
'end': (36, 36),
'exclusiveGateway': (50, 50),
'event': (36, 36),
'parallelGateway': (50, 50),
'sequenceFlow': (150, 10),
'pool': (250, 100),
'lane': (200, 100),
'dataObject': (40, 60),
'dataStore': (60, 60),
'subProcess': (120, 90),
'eventBasedGateway': (50, 50),
'timerEvent': (40, 40),
}
definitions = ET.Element('bpmn:definitions', {
'xmlns:xsi': namespaces['xsi'],
'xmlns:bpmn': namespaces['bpmn'],
'xmlns:bpmndi': namespaces['bpmndi'],
'xmlns:di': namespaces['di'],
'xmlns:dc': namespaces['dc'],
'targetNamespace': "http://example.bpmn.com",
'id': "simpleExample"
})
# Create BPMN collaboration element
collaboration = ET.SubElement(definitions, 'bpmn:collaboration', id='collaboration_1')
# Create BPMN process elements
process = []
for idx in range(len(full_pred['pool_dict'].items())):
process_id = f'process_{idx+1}'
process.append(ET.SubElement(definitions, 'bpmn:process', id=process_id, isExecutable='false', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]]))
bpmndi = ET.SubElement(definitions, 'bpmndi:BPMNDiagram', id='BPMNDiagram_1')
bpmnplane = ET.SubElement(bpmndi, 'bpmndi:BPMNPlane', id='BPMNPlane_1', bpmnElement='collaboration_1')
full_pred['boxes'] = rescale(scale, full_pred['boxes'])
# Add diagram elements for each pool
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
pool_id = f'participant_{idx+1}'
pool = ET.SubElement(collaboration, 'bpmn:participant', id=pool_id, processRef=f'process_{idx+1}', name=text_mapping[full_pred['BPMN_id'][list(full_pred['pool_dict'].keys())[idx]]])
# Calculate the bounding box for the pool
if len(keep_elements) == 0:
min_x, min_y, max_x, max_y = full_pred['boxes'][pool_index]
pool_width = max_x - min_x
pool_height = max_y - min_y
else:
min_x, min_y, max_x, max_y = calculate_pool_bounds(full_pred, keep_elements, size_elements)
pool_width = max_x - min_x + 100 # Adding padding
pool_height = max_y - min_y + 100 # Adding padding
add_diagram_elements(bpmnplane, pool_id, min_x - 50, min_y - 50, pool_width, pool_height)
# Create BPMN elements for each pool
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
create_bpmn_object(process[idx], bpmnplane, text_mapping, definitions, size_elements, full_pred, keep_elements)
# Create message flow elements
message_flows = [i for i, label in enumerate(full_pred['labels']) if class_dict[label] == 'messageFlow']
for idx in message_flows:
create_flow_element(bpmnplane, text_mapping, idx, size_elements, full_pred, collaboration, message=True)
# Create sequence flow elements
for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
for i in keep_elements:
if full_pred['labels'][i] == list(class_dict.values()).index('sequenceFlow'):
create_flow_element(bpmnplane, text_mapping, i, size_elements, full_pred, process[idx], message=False)
# Generate pretty XML string
tree = ET.ElementTree(definitions)
rough_string = ET.tostring(definitions, 'utf-8')
reparsed = minidom.parseString(rough_string)
pretty_xml_as_string = reparsed.toprettyxml(indent=" ")
full_pred['boxes'] = rescale(1/scale, full_pred['boxes'])
return pretty_xml_as_string
# Function to load the models only once and use session state to keep track of it
def load_models():
with st.spinner('Loading model...'):
model_object = get_faster_rcnn_model(len(object_dict))
model_arrow = get_arrow_model(len(arrow_dict),2)
url_arrow = 'https://drive.google.com/uc?id=1xwfvo7BgDWz-1jAiJC1DCF0Wp8YlFNWt'
url_object = 'https://drive.google.com/uc?id=1GiM8xOXG6M6r8J9HTOeMJz9NKu7iumZi'
# Define paths to save models
output_arrow = 'model_arrow.pth'
output_object = 'model_object.pth'
# Download models using gdown
if not Path(output_arrow).exists():
# Download models using gdown
gdown.download(url_arrow, output_arrow, quiet=False)
else:
print('Model arrow downloaded from local')
if not Path(output_object).exists():
gdown.download(url_object, output_object, quiet=False)
else:
print('Model object downloaded from local')
# Load models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
model_object.load_state_dict(torch.load(output_object, map_location=device))
st.session_state.model_loaded = True
st.session_state.model_arrow = model_arrow
st.session_state.model_object = model_object
# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
if pad:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.5) # Adjust the brightness if necessary
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return new_scaled_size, image
# Function to display various options for image annotation
def display_options(image, score_threshold):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
write_class = st.toggle("Write Class", value=True)
draw_keypoints = st.toggle("Draw Keypoints", value=True)
draw_boxes = st.toggle("Draw Boxes", value=True)
with col2:
draw_text = st.toggle("Draw Text", value=False)
write_text = st.toggle("Write Text", value=False)
draw_links = st.toggle("Draw Links", value=False)
with col3:
write_score = st.toggle("Write Score", value=True)
write_idx = st.toggle("Write Index", value=False)
with col4:
# Define options for the dropdown menu
dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
dropdown_options[0] = 'all'
selected_option = st.selectbox("Show class", dropdown_options)
# Draw the annotated image with selected options
annotated_image = draw_stream(
np.array(image), prediction=st.session_state.prediction, text_predictions=st.session_state.text_pred,
draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_print=selected_option,
score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
)
# Display the original and annotated images side by side
image_comparison(
img1=annotated_image,
img2=image,
label1="Annotated Image",
label2="Original Image",
starting_position=99,
width=1000,
)
# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold):
_, uploaded_image = prepare_image(image, pad=False)
img_tensor = F.to_tensor(prepare_image(image.convert('RGB'))[1])
# Display original image
if 'image_placeholder' not in st.session_state:
image_placeholder = st.empty() # Create an empty placeholder
image_placeholder.image(uploaded_image, caption='Original Image', width=1000)
# Prediction
_, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=0.5)
# Perform OCR on the uploaded image
ocr_results = text_prediction(uploaded_image)
# Filter and map OCR results to prediction results
st.session_state.text_pred = filter_text(ocr_results, threshold=0.5)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=0.5)
# Remove the original image display
image_placeholder.empty()
# Force garbage collection
gc.collect()
@st.cache_data
def get_image(uploaded_file):
return Image.open(uploaded_file).convert('RGB')
def main():
st.set_page_config(layout="wide")
# Add your company logo banner
st.image("./images/banner.png", use_column_width=True)
# Sidebar content
st.sidebar.header("This BPMN AI model recognition is proposed by ELCA in collaboration with EPFL.")
st.sidebar.subheader("Instructions:")
st.sidebar.text("1. Upload you image")
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
st.sidebar.text("3. Set the score threshold \n for prediction (default is 0.5)")
st.sidebar.text("4. Set the scale for the XML file \n (default is 1.0)")
st.sidebar.text("5. Click on 'Launch Prediction'")
st.sidebar.subheader("You can close this sidebar")
# Set the title of the app
st.title("BPMN model recognition demo")
# Display current memory usage
memory_usage = get_memory_usage()
print(f"Current memory usage: {memory_usage:.2f} MB")
# Initialize the session state for storing pool bounding boxes
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
# Load the models using the defined function
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state:
clear_memory()
load_models()
model_arrow = st.session_state.model_arrow
model_object = st.session_state.model_object
#Create the layout for the app
col1, col2 = st.columns(2)
with col1:
# Create a file uploader for the user to upload an image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Display the uploaded image if the user has uploaded an image
if uploaded_file is not None:
with st.spinner('wait for image...'):
original_image = get_image(uploaded_file)
col1, col2 = st.columns(2)
# Create a cropper to allow the user to crop the image and display the cropped image
with col1:
cropped_image = st_cropper(original_image, realtime_update=True, box_color='#0000FF', should_resize_image=True, default_coords=(30, original_image.size[0]-30, 30, original_image.size[1]-30))
with col2:
st.image(cropped_image, caption="Cropped Image", use_column_width=False, width=500)
# Display the options for the user to set the score threshold and scale
if cropped_image is not None:
col1, col2, col3 = st.columns(3)
with col1:
score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
with col2:
st.session_state.scale = st.slider("Set scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
# Launch the prediction when the user clicks the button
if st.button("Launch Prediction"):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
perform_inference(model_object, model_arrow, st.session_state.crop_image, score_threshold)
st.session_state.prediction = modif_box_pos(st.session_state.prediction, object_dict)
print('Detection completed!')
# If the prediction has been made and the user has uploaded an image, display the options for the user to annotate the image
if 'prediction' in st.session_state and uploaded_file is not None:
st.success('Detection completed!')
display_options(st.session_state.crop_image, score_threshold)
#if st.session_state.prediction_up==True:
st.session_state.bpmn_xml = create_XML(st.session_state.prediction.copy(), st.session_state.text_mapping, st.session_state.scale)
display_bpmn_xml(st.session_state.bpmn_xml)
# Force garbage collection after display
gc.collect()
if __name__ == "__main__":
print('Starting the app...')
main()