Spaces:
Sleeping
Sleeping
import requests | |
import pandas as pd | |
from io import StringIO | |
import streamlit as st | |
import os | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import plotly.colors as pc | |
import numpy as np | |
from sklearn.metrics import mean_squared_error | |
from statsmodels.tsa.stattools import acf | |
from statsmodels.graphics.tsaplots import plot_acf | |
import matplotlib.pyplot as plt | |
from datetime import datetime | |
import folium | |
import seaborn as sns | |
from streamlit_folium import st_folium | |
from datetime import datetime, timedelta | |
def get_current_time(): | |
now = datetime.now() | |
current_hour = now.hour | |
current_minute = now.minute | |
# Return the hour and a boolean indicating if it is after the 10th minute | |
return current_hour, current_minute >= 10 | |
##GET ALL FILES FROM GITHUB | |
def load_GitHub(github_token, file_name, hour, after_10_min): | |
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}' | |
headers = {'Authorization': f'token {github_token}'} | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
csv_content = StringIO(response.text) | |
df = pd.read_csv(csv_content) | |
if 'Date' in df.columns: | |
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime | |
df.set_index('Date', inplace=True) # Set 'Date' column as the index | |
#df.to_csv(file_name) | |
return df | |
else: | |
print(f"Failed to download {file_name}. Status code: {response.status_code}") | |
return None | |
def load_forecast(github_token, hour, after_10_min): | |
predictions_dict = {} | |
for hour in range(24): | |
file_name = f'Predictions_{hour}h.csv' | |
df = load_GitHub(github_token, file_name, hour, after_10_min) | |
if df is not None: | |
predictions_dict[file_name] = df | |
return predictions_dict | |
def convert_European_time(data, time_zone): | |
data.index = pd.to_datetime(data.index, utc=True) | |
data.index = data.index.tz_convert(time_zone) | |
data.index = data.index.tz_localize(None) | |
return data | |
def simplify_model_names(df): | |
# Define the mapping of complex names to simpler ones | |
replacements = { | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', | |
r'\.Naive\.\dD': '.Naive', | |
} | |
# Apply the replacements | |
for original, simplified in replacements.items(): | |
df.columns = df.columns.str.replace(original, simplified, regex=True) | |
return df | |
def simplify_model_names_in_index(df): | |
# Define the mapping of complex names to simpler ones | |
replacements = { | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', | |
r'\.Naive\.\dD': '.Naive', | |
} | |
# Apply the replacements to the DataFrame index | |
for original, simplified in replacements.items(): | |
df.index = df.index.str.replace(original, simplified, regex=True) | |
return df | |
github_token = st.secrets["GitHub_Token_KUL_Margarida"] | |
if github_token: | |
hour, after_10_min=get_current_time() | |
forecast_dict = load_forecast(github_token, hour, after_10_min) | |
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min) | |
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min) | |
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min) | |
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min) | |
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min) | |
Data_PT=load_GitHub(github_token, 'PT_Entsoe_UTC.csv', hour, after_10_min) | |
Data_ES=load_GitHub(github_token, 'ES_Entsoe_UTC.csv', hour, after_10_min) | |
Data_AT=load_GitHub(github_token, 'AT_Entsoe_UTC.csv', hour, after_10_min) | |
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels') | |
Data_FR=convert_European_time(Data_FR, 'Europe/Paris') | |
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam') | |
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin') | |
Data_PT=convert_European_time(Data_PT, 'Europe/Lisbon') | |
Data_ES=convert_European_time(Data_ES, 'Europe/Madrid') | |
Data_AT=convert_European_time(Data_AT, 'Europe/Vienna') | |
else: | |
print("Please enter your GitHub Personal Access Token to proceed.") | |
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs | |
with col1: | |
st.title("Transparency++") | |
with col2: | |
upper_space = col2.empty() | |
upper_space = col2.empty() | |
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images | |
with col2_1: | |
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed | |
with col2_2: | |
st.image("energyville_logo.png", width=100) | |
st.write("**Evaluate and analyze ENTSO-E Transparency Platform data quality, forecast accuracy, and energy trends for Portugal, Spain, Belgium, France, Germany, Austria, and the Netherlands.**") | |
upper_space.markdown(""" | |
| |
| |
""", unsafe_allow_html=True) | |
countries = { | |
'Overall': 'Overall', | |
'Austria': 'AT', | |
'Belgium': 'BE', | |
'France': 'FR', | |
'Germany': 'DE', | |
'Netherlands': 'NL', | |
'Portugal': 'PT', | |
'Spain': 'ES', | |
} | |
st.sidebar.header('Filters') | |
st.sidebar.subheader("Select Country") | |
st.sidebar.caption("Choose the country for which you want to display data or forecasts.") | |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys())) | |
# Ensure the date range provides two dates | |
# Sidebar with radio buttons for different sections | |
if selected_country != 'Overall': | |
st.sidebar.subheader("Section") | |
st.sidebar.caption("Select the type of information you want to explore.") | |
section = st.sidebar.radio('', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1) | |
else: | |
section = None # No section is shown when "Overall" is selected | |
forecast_columns_with_wind_offshore = [ | |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] | |
forecast_columns_no_wind_offshore = [ | |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] | |
if selected_country == 'Overall': | |
data = None # You can set data to None or a specific dataset based on your logic | |
section = None # No section selected when "Overall" is chosen | |
else: | |
country_code = countries[selected_country] | |
if country_code == 'BE': | |
forecast_columns=forecast_columns_with_wind_offshore | |
data = Data_BE | |
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore'] | |
data['Temperature'] = data['temperature_2m_8'] | |
data['Wind Speed Offshore'] = data['wind_speed_100m_4'] | |
data['Wind Speed Onshore'] = data['wind_speed_100m_8'] | |
elif country_code == 'DE': | |
forecast_columns=forecast_columns_with_wind_offshore | |
data = Data_DE | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
elif country_code == 'NL': | |
forecast_columns=forecast_columns_with_wind_offshore | |
data = Data_NL | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
elif country_code == 'FR': | |
forecast_columns=forecast_columns_with_wind_offshore | |
data = Data_FR | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
elif country_code == 'PT': | |
forecast_columns=forecast_columns_with_wind_offshore | |
data = Data_PT | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
elif country_code == 'AT': | |
forecast_columns=forecast_columns_no_wind_offshore | |
data = Data_AT | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
elif country_code == 'ES': | |
forecast_columns=forecast_columns_no_wind_offshore | |
data = Data_ES | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
def add_feature(df2, df_main): | |
#df_main.index = pd.to_datetime(df_main.index) | |
#df2.index = pd.to_datetime(df2.index) | |
df_combined = df_main.combine_first(df2) | |
last_date_df1 = df_main.index.max() | |
first_date_df2 = df2.index.min() | |
if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1): | |
df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0) | |
#df_combined.reset_index(inplace=True) | |
return df_combined | |
#data.index = data.index.tz_localize('UTC') | |
if section == 'Data Quality': | |
st.header('Data Quality') | |
st.write('The table below presents the data quality metrics focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.') | |
yesterday_midnight = pd.Timestamp(datetime.now().date() - pd.Timedelta(days=1)).replace(hour=23, minute=59, second=59) | |
# Filter data until the end of yesterday (midnight) | |
data_quality = data[data.index <= yesterday_midnight] | |
# Report % of missing values | |
missing_values = data_quality[forecast_columns].isna().mean() * 100 | |
missing_values = missing_values.round(2) | |
installed_capacities = { | |
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134}, | |
'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915}, | |
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053}, | |
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190}, | |
'PT': { 'Solar': 1811, 'Wind Offshore': 25, 'Wind Onshore': 5333}, | |
'ES': { 'Solar': 23867, 'Wind Onshore': 30159}, | |
'AT': { 'Solar': 7294, 'Wind Onshore': 4021 } | |
} | |
if country_code not in installed_capacities: | |
st.error(f"Installed capacities not defined for country code '{country_code}'.") | |
st.stop() | |
# Report % of extreme, impossible values for the selected country | |
capacities = installed_capacities[country_code] | |
extreme_values = {} | |
for col in forecast_columns: | |
if 'Solar_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 | |
elif 'Solar_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 | |
elif 'Wind_onshore_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 | |
elif 'Wind_onshore_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 | |
elif 'Wind_offshore_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 | |
elif 'Wind_offshore_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 | |
elif 'Load_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 | |
elif 'Load_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 | |
extreme_values = pd.Series(extreme_values).round(2) | |
# Combine all metrics into one DataFrame | |
metrics_df = pd.DataFrame({ | |
'Missing Values (%)': missing_values, | |
'Extreme/Nonsensical Values (%)': extreme_values, | |
}) | |
st.markdown( | |
""" | |
<style> | |
.dataframe {font-size: 45px !important;} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.dataframe(metrics_df) | |
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True) | |
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True) | |
# Section 2: Forecasts | |
elif section == 'Forecasts Quality': | |
st.header('Forecast Quality') | |
# Time series for last 1 week | |
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))] | |
st.write('The below plot shows the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.') | |
# Options for selecting the data to display | |
if country_code!='ES' and country_code!='AT': | |
variable_options = { | |
"Load": ("Load_entsoe", "Load_forecast_entsoe"), | |
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), | |
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), | |
"Wind Offshore": ("Wind_offshore_entsoe", "Wind_offshore_forecast_entsoe") | |
} | |
else: | |
variable_options = { | |
"Load": ("Load_entsoe", "Load_forecast_entsoe"), | |
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), | |
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), | |
} | |
# Dropdown to select the variable | |
selected_variable = st.selectbox("Select Variable for Line PLot", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Plot only the selected variable's data | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual')) | |
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E')) | |
fig.update_layout(title=f'Forecasts vs Actual for {selected_variable}', xaxis_title='Date', yaxis_title='Value [MW]') | |
st.plotly_chart(fig) | |
# Scatter plots for error distribution | |
st.subheader('Error Distribution') | |
st.write('The below scatter plots show the error distribution of all fields: Solar, Wind and Load.') | |
selected_variable = st.selectbox("Select Variable for Error Distribution", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Filter data for the selected year and check if columns are available | |
data_2024 = data[data.index.year > 2023] | |
if forecast_col in data_2024.columns: | |
obs = data_2024[actual_col] | |
pred = data_2024[forecast_col] | |
# Calculate error and plot | |
error = pred - obs | |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Forecast ENTSO-E [MW]'}) | |
fig.update_layout(title=f'Error Distribution for {selected_variable}') | |
st.plotly_chart(fig) | |
st.subheader('Accuracy Metrics (Sorted by rMAE):') | |
date_range = st.date_input( | |
"Select Date Range for Metrics Calculation:", | |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))) | |
) | |
if len(date_range) == 2: | |
start_date = pd.Timestamp(date_range[0]) | |
end_date = pd.Timestamp(date_range[1]) | |
else: | |
st.error("Please select a valid date range.") | |
st.stop() | |
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. " | |
st.write(output_text) | |
data = data.loc[start_date:end_date] | |
if country_code!='ES' and country_code!='AT': | |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore']) | |
else: | |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore']) | |
for i in range(0, len(forecast_columns), 2): | |
actual_col = forecast_columns[i] | |
forecast_col = forecast_columns[i + 1] | |
if forecast_col in data.columns: | |
obs = data[actual_col] | |
pred = data[forecast_col] | |
error = pred - obs | |
mae = round(np.mean(np.abs(error)),2) | |
if 'Load' in actual_col: | |
persistence = obs.shift(168) # Weekly persistence | |
else: | |
persistence = obs.shift(24) # Daily persistence | |
# Using the whole year's data for rMAE calculations | |
rmae = round(mae / np.mean(np.abs(obs - persistence)),2) | |
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore' | |
accuracy_metrics.loc[row_label] = [mae, rmae] | |
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column) | |
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True) | |
accuracy_metrics = accuracy_metrics.round(4) | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.markdown( | |
""" | |
<style> | |
.small-chart { | |
margin-top: 30px; /* Adjust this value as needed */ | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.dataframe(accuracy_metrics) | |
st.markdown( | |
""" | |
<style> | |
.small-chart { | |
margin-top: -30px; /* Adjust this value as needed */ | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
with col2: | |
# Prepare data for the radar chart | |
rmae_values = accuracy_metrics['rMAE'].tolist() | |
categories = accuracy_metrics.index.tolist() | |
fig = go.Figure() | |
fig.add_trace(go.Scatterpolar( | |
r=rmae_values, | |
theta=categories, | |
fill='toself', | |
name='rMAE' | |
)) | |
# Configuring radar chart layout to be smaller | |
fig.update_layout( | |
width=250, # Adjust width | |
height=250, # Adjust height | |
margin=dict(t=20, b=20, l=0, r=0), # Remove all margins | |
polar=dict( | |
radialaxis=dict( | |
visible=True, | |
range=[0, max(rmae_values) * 1.2] # Adjust range dynamically | |
)), | |
showlegend=False | |
) | |
# Apply CSS class to remove extra space above chart | |
st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, className="small-chart") | |
st.subheader('ACF plots of Errors') | |
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.') | |
# Dropdown to select the variable | |
selected_variable = st.selectbox("Select Variable for ACF of Errors", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Calculate the error and plot ACF if columns are available | |
if forecast_col in data.columns: | |
obs = data[actual_col] | |
pred = data[forecast_col] | |
error = pred - obs | |
st.write(f"**ACF of Errors for {selected_variable}**") | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
plot_acf(error.dropna(), ax=ax) | |
st.pyplot(fig) | |
# Optionally calculate and store ACF values for further analysis if needed | |
acf_values = acf(error.dropna(), nlags=240) | |
# Section 3: Insights | |
elif section == 'Insights': | |
st.header("Insights") | |
st.write('The scatter plots below are created to explore possible correlations between the data fields: Solar, Wind Onshore, Wind Offshore (if any), Load, and Weather Features.') | |
# Add a selection box for the data resolution (weekly, daily, hourly) | |
data_2024 = data[data.index.year == 2024] | |
resolution = st.selectbox('Select data resolution:', ['Daily', 'Hourly']) | |
# Resample data based on the selected resolution | |
if resolution == 'Hourly': | |
resampled_data = data_2024 | |
elif resolution == 'Daily': | |
resampled_data = data_2024.resample('D').mean() # Resample to daily mean | |
# Select the necessary columns for the scatter plot | |
if country_code!='ES' and country_code!='AT': | |
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns | |
else: | |
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe'] + weather_columns | |
selected_df = resampled_data[selected_columns] | |
selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns] | |
# Drop missing values | |
selected_df = selected_df.dropna() | |
# Create the scatter plots using seaborn's pairplot | |
sns.set_theme(style="ticks") | |
pairplot_fig = sns.pairplot(selected_df) | |
# Display the pairplot in Streamlit | |
st.pyplot(pairplot_fig) | |
elif selected_country == 'Overall': | |
st.subheader("Net Load Error Map") | |
st.write(""" | |
The net load error map highlights the error in the forecasted versus actual net load for each country. | |
Hover over each country to see details on the latest net load error and the timestamp (with the time zone of the corresponding country) of the last recorded data. | |
""") | |
def get_forecast_columns(country_code): | |
if country_code in ['Belgium', 'Germany', 'Netherlands', 'France', 'Portugal']: | |
return ['Load_entsoe', 'Wind_onshore_entsoe', 'Solar_entsoe', 'Load_forecast_entsoe', 'Wind_onshore_forecast_entsoe', 'Solar_forecast_entsoe', 'Wind_offshore_entsoe', 'Wind_offshore_forecast_entsoe'] | |
else: | |
return ['Load_entsoe', 'Wind_onshore_entsoe', 'Solar_entsoe', 'Load_forecast_entsoe', 'Wind_onshore_forecast_entsoe', 'Solar_forecast_entsoe'] | |
def plot_net_load_error_map(data_dict): | |
# Define forecast columns used in calculation | |
def calculate_net_load_error(df, country_code): | |
forecast_columns = get_forecast_columns(country_code) | |
filter_df = df[forecast_columns].dropna() | |
# Initialize net_load and net_load_forecast with Load and other available data | |
net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Solar_entsoe'] | |
net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe'] | |
# Subtract Wind_offshore_entsoe if the column exists | |
if 'Wind_offshore_entsoe' in filter_df.columns: | |
net_load -= filter_df['Wind_offshore_entsoe'] | |
# Subtract Wind_offshore_forecast_entsoe if the column exists | |
if 'Wind_offshore_forecast_entsoe' in filter_df.columns: | |
net_load_forecast -= filter_df['Wind_offshore_forecast_entsoe'] | |
# Calculate the error based on the latest values | |
error = (net_load_forecast - net_load).iloc[-1] | |
date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format | |
return error, date | |
# Calculate net load errors and dates for each country | |
net_load_errors = {country_name: calculate_net_load_error(data, country_name) for country_name, data in data_dict.items()} | |
# Create DataFrame for Folium with additional date column | |
df_net_load_error = pd.DataFrame({ | |
'country': list(net_load_errors.keys()), | |
'net_load_error': [v[0] for v in net_load_errors.values()], | |
'date': [v[1] for v in net_load_errors.values()] | |
}) | |
# Load the GeoJSON file | |
geojson_url = "https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/world-countries.json" | |
geo_data = requests.get(geojson_url).json() | |
# Filter GeoJSON to only include the selected countries | |
selected_countries = list(data_dict.keys()) # Get the list of selected countries (Belgium, France, Germany, Netherlands) | |
filtered_geojson = { | |
"type": "FeatureCollection", | |
"features": [feature for feature in geo_data["features"] if feature["properties"]["name"] in selected_countries] | |
} | |
# Merge the geojson with the error and date data | |
for feature in filtered_geojson["features"]: | |
country_name = feature["properties"]["name"] | |
row = df_net_load_error[df_net_load_error['country'] == country_name] | |
if not row.empty: | |
feature["properties"]["net_load_error"] = row.iloc[0]["net_load_error"] | |
feature["properties"]["date"] = row.iloc[0]["date"] | |
# Initialize the Folium map centered on Central Europe | |
m = folium.Map(location=[46.6034, 1.8883], zoom_start=4.5, tiles="cartodb positron") | |
# Add choropleth layer to map net load errors by country | |
folium.Choropleth( | |
geo_data=filtered_geojson, | |
name="choropleth", | |
data=df_net_load_error, | |
columns=["country", "net_load_error"], | |
key_on="feature.properties.name", | |
fill_color= "RdYlBu", #"RdYlBu", # Use a more vibrant color palette | |
fill_opacity=0.7, | |
line_opacity=0.5, | |
line_color="black", # Neutral border color | |
legend_name="Net Load Error [MW]" | |
).add_to(m) | |
# Add a GeoJson layer with custom tooltip for country, error, and date | |
folium.GeoJson( | |
filtered_geojson, | |
style_function=lambda x: {'fillOpacity': 0, 'color': 'black', 'weight': 0}, | |
tooltip=folium.GeoJsonTooltip( | |
fields=["name", "net_load_error", "date"], | |
aliases=["Country:", "Net Load Error [MW]:", "Date:"], | |
localize=True | |
) | |
).add_to(m) | |
# Display Folium map in Streamlit | |
st_folium(m, width=700, height=600) | |
data_dict = { | |
'Belgium': Data_BE, | |
'France': Data_FR, | |
'Germany': Data_DE, | |
'Netherlands': Data_NL, | |
'Portugal': Data_PT, | |
'Austria': Data_AT, | |
'Spain': Data_ES, | |
} | |
plot_net_load_error_map(data_dict) | |
st.subheader("rMAE of Forecasts published on ENTSO-E TP") | |
st.write("""The rMAE of Forecasts chart compares the forecast accuracy of the predictions published by ENTSO-E Transparency Platform for Portugal, Spain, Belgium, France, Germany, Austria, and the Netherlands. It shows the rMAE for onshore wind, offshore wind (if any), solar, and load demand, highlighting how well forecasts perform relative to a basic persistence model across these countries and energy sectors.""") | |
# Function to calculate MAE | |
def calculate_mae(actual, forecast): | |
return np.mean(np.abs(actual - forecast)) | |
# Function to calculate persistence MAE | |
def calculate_persistence_mae(data, shift_hours): | |
return np.mean(np.abs(data - data.shift(shift_hours))) | |
# Function to calculate rMAE for each country | |
def calculate_rmae_for_country(df): | |
rmae = {} | |
rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168) | |
rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24) | |
# Only calculate Wind_offshore rMAE if the columns exist | |
if 'Wind_offshore_entsoe' in df.columns and 'Wind_offshore_forecast_entsoe' in df.columns: | |
rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24) | |
else: | |
rmae['Wind_offshore'] = None # Mark as None if not applicable | |
rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24) | |
return rmae | |
# Function to create rMAE DataFrame | |
def create_rmae_dataframe(data_dict): | |
rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []} | |
for country_name, df in data_dict.items(): | |
forecast_columns=get_forecast_columns(country_name) | |
df_filtered = df[forecast_columns].dropna() | |
rmae = calculate_rmae_for_country(df_filtered) | |
rmae_values['Country'].append(country_name) | |
rmae_values['Load'].append(rmae['Load']) | |
rmae_values['Wind_onshore'].append(rmae['Wind_onshore']) | |
rmae_values['Solar'].append(rmae['Solar']) | |
# Append Wind_offshore rMAE only if it's not None (i.e., the country has offshore wind data) | |
if rmae['Wind_offshore'] is not None: | |
rmae_values['Wind_offshore'].append(rmae['Wind_offshore']) | |
else: | |
rmae_values['Wind_offshore'].append(np.nan) # Insert NaN for countries without offshore wind | |
return pd.DataFrame(rmae_values) | |
# Function to plot radar chart | |
def plot_rmae_radar_chart(rmae_df): | |
fig = go.Figure() | |
# Dynamically adjust angles to exclude Wind_offshore if all values are NaN | |
angles = ['Load', 'Wind_onshore', 'Solar'] | |
if not rmae_df['Wind_offshore'].isna().all(): # Only include Wind_offshore if it's not NaN for all countries | |
angles.append('Wind_offshore') | |
for _, row in rmae_df.iterrows(): | |
fig.add_trace(go.Scatterpolar( | |
r=[row[angle] for angle in angles], | |
theta=angles, | |
fill='toself', | |
name=row['Country'] | |
)) | |
fig.update_layout( | |
polar=dict( | |
radialaxis=dict(visible=True, range=[0, 1.2]) | |
), | |
showlegend=True, | |
title="rMAE Radar Chart by Country" | |
) | |
st.plotly_chart(fig) | |
# Main execution to create and display radar plot | |
rmae_df = create_rmae_dataframe(data_dict) | |
plot_rmae_radar_chart(rmae_df) | |