Spaces:
Running
Running
import requests | |
import pandas as pd | |
from io import StringIO | |
import streamlit as st | |
import os | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import plotly.colors as pc | |
import numpy as np | |
from sklearn.metrics import mean_squared_error | |
from statsmodels.tsa.stattools import acf | |
from statsmodels.graphics.tsaplots import plot_acf | |
import matplotlib.pyplot as plt | |
from datetime import datetime | |
import folium | |
import seaborn as sns | |
from streamlit_folium import st_folium | |
from datetime import datetime, timedelta | |
from entsoe.geo import load_zones | |
from branca.colormap import LinearColormap | |
import branca | |
def get_current_time(): | |
now = datetime.now() | |
current_hour = now.hour | |
current_minute = now.minute | |
# Return the hour and a boolean indicating if it is after the 10th minute | |
return current_hour, current_minute >= 10 | |
##GET ALL FILES FROM GITHUB | |
def load_GitHub(github_token, file_name, hour, after_10_min): | |
url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}' | |
headers = {'Authorization': f'token {github_token}'} | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
csv_content = StringIO(response.text) | |
df = pd.read_csv(csv_content) | |
if 'Date' in df.columns: | |
df['Date'] = pd.to_datetime(df['Date']) # Convert 'Date' column to datetime | |
df.set_index('Date', inplace=True) # Set 'Date' column as the index | |
#df.to_csv(file_name) | |
return df | |
else: | |
print(f"Failed to download {file_name}. Status code: {response.status_code}") | |
return None | |
def load_forecast(github_token, hour, after_10_min): | |
predictions_dict = {} | |
for hour in range(24): | |
file_name = f'Predictions_{hour}h.csv' | |
df = load_GitHub(github_token, file_name, hour, after_10_min) | |
if df is not None: | |
predictions_dict[file_name] = df | |
return predictions_dict | |
def convert_European_time(data, time_zone): | |
data.index = pd.to_datetime(data.index, utc=True) | |
data.index = data.index.tz_convert(time_zone) | |
data.index = data.index.tz_localize(None) | |
return data | |
def simplify_model_names(df): | |
# Define the mapping of complex names to simpler ones | |
replacements = { | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', | |
r'\.Naive\.\dD': '.Naive', | |
} | |
# Apply the replacements | |
for original, simplified in replacements.items(): | |
df.columns = df.columns.str.replace(original, simplified, regex=True) | |
return df | |
def simplify_model_names_in_index(df): | |
# Define the mapping of complex names to simpler ones | |
replacements = { | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia', | |
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM', | |
r'\.Naive\.\dD': '.Naive', | |
} | |
# Apply the replacements to the DataFrame index | |
for original, simplified in replacements.items(): | |
df.index = df.index.str.replace(original, simplified, regex=True) | |
return df | |
github_token = st.secrets["GitHub_Token_KUL_Margarida"] | |
if github_token: | |
hour, after_10_min=get_current_time() | |
forecast_dict = load_forecast(github_token, hour, after_10_min) | |
historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min) | |
Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min) | |
Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min) | |
Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min) | |
Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min) | |
Data_PT=load_GitHub(github_token, 'PT_Entsoe_UTC.csv', hour, after_10_min) | |
Data_ES=load_GitHub(github_token, 'ES_Entsoe_UTC.csv', hour, after_10_min) | |
Data_AT=load_GitHub(github_token, 'AT_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_CALA=load_GitHub(github_token, 'IT_CALA_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_CNOR=load_GitHub(github_token, 'IT_CNOR_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_CSUD=load_GitHub(github_token, 'IT_CSUD_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_NORD=load_GitHub(github_token, 'IT_NORD_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_SICI=load_GitHub(github_token, 'IT_SICI_Entsoe_UTC.csv', hour, after_10_min) | |
Data_IT_SUD=load_GitHub(github_token, 'IT_SUD_Entsoe_UTC.csv', hour, after_10_min) | |
Data_DK_1=load_GitHub(github_token, 'DK_1_Entsoe_UTC.csv', hour, after_10_min) | |
Data_DK_2=load_GitHub(github_token, 'DK_2_Entsoe_UTC.csv', hour, after_10_min) | |
Data_BE=convert_European_time(Data_BE, 'Europe/Brussels') | |
Data_FR=convert_European_time(Data_FR, 'Europe/Paris') | |
Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam') | |
Data_DE=convert_European_time(Data_DE, 'Europe/Berlin') | |
Data_PT=convert_European_time(Data_PT, 'Europe/Lisbon') | |
Data_ES=convert_European_time(Data_ES, 'Europe/Madrid') | |
Data_AT=convert_European_time(Data_AT, 'Europe/Vienna') | |
Data_IT_CALA = convert_European_time(Data_IT_CALA, 'Europe/Rome') | |
Data_IT_CNOR = convert_European_time(Data_IT_CNOR, 'Europe/Rome') | |
Data_IT_CSUD = convert_European_time(Data_IT_CSUD, 'Europe/Rome') | |
Data_IT_NORD = convert_European_time(Data_IT_NORD, 'Europe/Rome') | |
Data_IT_SICI = convert_European_time(Data_IT_SICI, 'Europe/Rome') | |
Data_IT_SUD = convert_European_time(Data_IT_SUD, 'Europe/Rome') | |
Data_DK_1 = convert_European_time(Data_DK_1, 'Europe/Copenhagen') | |
Data_DK_2 = convert_European_time(Data_DK_2, 'Europe/Copenhagen') | |
else: | |
print("Please enter your GitHub Personal Access Token to proceed.") | |
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs | |
with col1: | |
st.title("Transparency++") | |
with col2: | |
upper_space = col2.empty() | |
upper_space = col2.empty() | |
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images | |
with col2_1: | |
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed | |
with col2_2: | |
st.image("energyville_logo.png", width=100) | |
st.write("**Evaluate and analyze ENTSO-E Transparency Platform data quality, forecast accuracy, and energy trends for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark.**") | |
upper_space.markdown(""" | |
| |
| |
""", unsafe_allow_html=True) | |
countries = { | |
'Overall': 'Overall', | |
'Austria': 'AT', | |
'Belgium': 'BE', | |
'Denmark 1': 'DK_1', | |
'Denmark 2': 'DK_2', | |
'France': 'FR', | |
'Germany-Luxembourg': 'DE_LU', | |
'Italy Calabria': 'IT_CALA', | |
'Italy Central North': 'IT_CNOR', | |
'Italy Central South': 'IT_CSUD', | |
'Italy North': 'IT_NORD', | |
'Italy Sicily': 'IT_SICI', | |
'Italy South': 'IT_SUD', | |
'Netherlands': 'NL', | |
'Portugal': 'PT', | |
'Spain': 'ES', | |
} | |
data_dict = { | |
'BE': Data_BE, | |
'FR': Data_FR, | |
'DE_LU': Data_DE, | |
'NL': Data_NL, | |
'PT': Data_PT, | |
'AT': Data_AT, | |
'ES': Data_ES, | |
'IT_CALA': Data_IT_CALA, | |
'IT_CNOR': Data_IT_CNOR, | |
'IT_CSUD': Data_IT_CSUD, | |
'IT_NORD': Data_IT_NORD, | |
'IT_SICI': Data_IT_SICI, | |
'IT_SUD': Data_IT_SUD, | |
'DK_1': Data_DK_1, | |
'DK_2': Data_DK_2, | |
} | |
countries_all_RES = ['BE', 'FR', 'NL', 'DE_LU', 'PT', 'DK_1', 'DK_2'] | |
countries_no_offshore= ['AT', 'ES', 'IT_CALA', 'IT_CNOR', 'IT_CSUD', 'IT_NORD', 'IT_SICI', 'IT_SUD',] | |
installed_capacities = { | |
'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134}, | |
'DE_LU': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915}, | |
'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053}, | |
'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190}, | |
'PT': { 'Solar': 1811, 'Wind Offshore': 25, 'Wind Onshore': 5333}, | |
'ES': { 'Solar': 23867, 'Wind Onshore': 30159}, | |
'AT': { 'Solar': 7294, 'Wind Onshore': 4021 }, | |
'DK_1': { 'Solar': 2738, 'Wind Offshore': 1601, 'Wind Onshore': 4112}, | |
'DK_2': { 'Solar': 992, 'Wind Offshore': 1045, 'Wind Onshore': 748}, | |
} | |
forecast_columns_all_RES = [ | |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] | |
forecast_columns_no_wind_offshore = [ | |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe'] | |
st.sidebar.header('Filters') | |
st.sidebar.subheader("Select Country") | |
st.sidebar.caption("Choose the country for which you want to display data or forecasts.") | |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys())) | |
# Sidebar with radio buttons for different sections | |
if selected_country != 'Overall': | |
st.sidebar.subheader("Section") | |
st.sidebar.caption("Select the type of information you want to explore.") | |
section = st.sidebar.radio('Section', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1, label_visibility='collapsed') | |
else: | |
section = None # No section is shown when "Overall" is selected | |
if selected_country == 'Overall': | |
data = None # You can set data to None or a specific dataset based on your logic | |
section = None # No section selected when "Overall" is chosen | |
else: | |
country_code = countries[selected_country] | |
data = data_dict.get(country_code) | |
if country_code in countries_all_RES: | |
forecast_columns = forecast_columns_all_RES | |
elif country_code in countries_no_offshore: | |
forecast_columns = forecast_columns_no_wind_offshore | |
if country_code == 'BE': | |
weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore'] | |
data['Temperature'] = data['temperature_2m_8'] | |
data['Wind Speed Onshore'] = data['wind_speed_100m_8'] | |
data['Wind Speed Offshore'] = data['wind_speed_100m_4'] | |
else: | |
weather_columns = ['Temperature', 'Wind Speed'] | |
data['Temperature'] = data['temperature_2m'] | |
data['Wind Speed'] = data['wind_speed_100m'] | |
if section == 'Data Quality': | |
st.header('Data Quality') | |
st.write('The table below presents the data quality metrics focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.') | |
yesterday_midnight = pd.Timestamp(datetime.now().date() - pd.Timedelta(days=1)).replace(hour=23, minute=59, second=59) | |
# Filter data until the end of yesterday (midnight) | |
data_quality = data[data.index <= yesterday_midnight] | |
# Report % of missing values | |
missing_values = data_quality[forecast_columns].isna().mean() * 100 | |
missing_values = missing_values.round(2) | |
if country_code not in installed_capacities: | |
st.markdown(f"⚠️ **Installed capacities not available on ENTSO-E Transparency Platform for country code '{country_code}'. Therefore, cannot calculate Extreme/Nonsensical values.**") | |
# If capacities are not available, assign NaN to extreme_values and skip extreme value checking | |
extreme_values = {col: np.nan for col in forecast_columns} | |
else: | |
capacities = installed_capacities[country_code] | |
extreme_values = {} | |
for col in forecast_columns: | |
if 'Solar_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 | |
elif 'Solar_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100 | |
elif 'Wind_onshore_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 | |
elif 'Wind_onshore_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100 | |
elif 'Wind_offshore_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 | |
elif 'Wind_offshore_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100 | |
elif 'Load_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 | |
elif 'Load_forecast_entsoe' in col: | |
extreme_values[col] = ((data_quality[col] < 0)).mean() * 100 | |
extreme_values = pd.Series(extreme_values).round(2) | |
# Combine all metrics into one DataFrame | |
metrics_df = pd.DataFrame({ | |
'Missing Values (%)': missing_values, | |
'Extreme/Nonsensical Values (%)': extreme_values, | |
}) | |
st.markdown( | |
""" | |
<style> | |
.dataframe {font-size: 45px !important;} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.dataframe(metrics_df) | |
st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True) | |
st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True) | |
elif section == 'Forecasts Quality': | |
st.header('Forecast Quality') | |
# Time series for last 1 week | |
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))] | |
st.write('The below plot shows the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.') | |
# Options for selecting the data to display | |
if country_code in countries_all_RES: | |
variable_options = { | |
"Load": ("Load_entsoe", "Load_forecast_entsoe"), | |
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), | |
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), | |
"Wind Offshore": ("Wind_offshore_entsoe", "Wind_offshore_forecast_entsoe") | |
} | |
elif country_code in countries_no_offshore: | |
variable_options = { | |
"Load": ("Load_entsoe", "Load_forecast_entsoe"), | |
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"), | |
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"), | |
} | |
else: | |
print('Country code doesnt correspond.') | |
# Dropdown to select the variable | |
selected_variable = st.selectbox("Select Variable for Line PLot", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Plot only the selected variable's data | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual')) | |
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E')) | |
fig.update_layout(title=f'Forecasts vs Actual for {selected_variable}', xaxis_title='Date', yaxis_title='Value [MW]') | |
st.plotly_chart(fig) | |
# Scatter plots for error distribution | |
st.subheader('Error Distribution') | |
st.write('The below scatter plots show the error distribution of all fields: Solar, Wind and Load.') | |
selected_variable = st.selectbox("Select Variable for Error Distribution", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Filter data for the selected year and check if columns are available | |
data_2024 = data[data.index.year > 2023] | |
if forecast_col in data_2024.columns: | |
obs = data_2024[actual_col] | |
pred = data_2024[forecast_col] | |
# Calculate error and plot | |
error = pred - obs | |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Forecast ENTSO-E [MW]'}) | |
fig.update_layout(title=f'Error Distribution for {selected_variable}') | |
st.plotly_chart(fig) | |
st.subheader('Accuracy Metrics (Sorted by rMAE):') | |
date_range = st.date_input( | |
"Select Date Range for Metrics Calculation:", | |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))) | |
) | |
if len(date_range) == 2: | |
start_date = pd.Timestamp(date_range[0]) | |
end_date = pd.Timestamp(date_range[1]) | |
else: | |
st.error("Please select a valid date range.") | |
st.stop() | |
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. " | |
st.write(output_text) | |
data = data.loc[start_date:end_date] | |
if country_code in countries_all_RES: | |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore']) | |
elif country_code in countries_no_offshore: | |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore']) | |
else: | |
print('Country code doesnt correspond.') | |
for i in range(0, len(forecast_columns), 2): | |
actual_col = forecast_columns[i] | |
forecast_col = forecast_columns[i + 1] | |
if forecast_col in data.columns: | |
obs = data[actual_col] | |
pred = data[forecast_col] | |
error = pred - obs | |
mae = round(np.mean(np.abs(error)),2) | |
if 'Load' in actual_col: | |
persistence = obs.shift(168) # Weekly persistence | |
else: | |
persistence = obs.shift(24) # Daily persistence | |
# Using the whole year's data for rMAE calculations | |
rmae = round(mae / np.mean(np.abs(obs - persistence)),2) | |
row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore' | |
accuracy_metrics.loc[row_label] = [mae, rmae] | |
accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column) | |
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True) | |
accuracy_metrics = accuracy_metrics.round(4) | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.markdown( | |
""" | |
<style> | |
.small-chart { | |
margin-top: 30px; /* Adjust this value as needed */ | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.dataframe(accuracy_metrics) | |
st.markdown( | |
""" | |
<style> | |
.small-chart { | |
margin-top: -30px; /* Adjust this value as needed */ | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
with col2: | |
# Prepare data for the radar chart | |
rmae_values = accuracy_metrics['rMAE'].tolist() | |
categories = accuracy_metrics.index.tolist() | |
fig = go.Figure() | |
fig.add_trace(go.Scatterpolar( | |
r=rmae_values, | |
theta=categories, | |
fill='toself', | |
name='rMAE' | |
)) | |
# Configuring radar chart layout to be smaller | |
fig.update_layout( | |
width=250, # Adjust width | |
height=250, # Adjust height | |
margin=dict(t=20, b=20, l=0, r=0), # Remove all margins | |
polar=dict( | |
radialaxis=dict( | |
visible=True, | |
range=[0, max(rmae_values) * 1.2] # Adjust range dynamically | |
)), | |
showlegend=False | |
) | |
# Apply CSS class to remove extra space above chart | |
st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, className="small-chart") | |
st.subheader('ACF plots of Errors') | |
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.') | |
# Dropdown to select the variable | |
selected_variable = st.selectbox("Select Variable for ACF of Errors", list(variable_options.keys())) | |
# Get the corresponding columns for the selected variable | |
actual_col, forecast_col = variable_options[selected_variable] | |
# Calculate the error and plot ACF if columns are available | |
if forecast_col in data.columns: | |
obs = data[actual_col] | |
pred = data[forecast_col] | |
error = pred - obs | |
st.write(f"**ACF of Errors for {selected_variable}**") | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
plot_acf(error.dropna(), ax=ax) | |
st.pyplot(fig) | |
# Optionally calculate and store ACF values for further analysis if needed | |
acf_values = acf(error.dropna(), nlags=240) | |
elif section == 'Insights': | |
st.header("Insights") | |
st.write('The scatter plots below are created to explore possible correlations between the data fields: Solar, Wind Onshore, Wind Offshore (if any), Load, and Weather Features.') | |
# Add a selection box for the data resolution (weekly, daily, hourly) | |
data_2024 = data[data.index.year == 2024] | |
resolution = st.selectbox('Select data resolution:', ['Daily', 'Hourly']) | |
# Resample data based on the selected resolution | |
if resolution == 'Hourly': | |
resampled_data = data_2024 | |
elif resolution == 'Daily': | |
resampled_data = data_2024.resample('D').mean() # Resample to daily mean | |
# Select the necessary columns for the scatter plot | |
if country_code in countries_all_RES: | |
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns | |
elif country_code in countries_no_offshore: | |
selected_columns = ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe'] + weather_columns | |
else: | |
print('Country code doesnt correspond.') | |
selected_df = resampled_data[selected_columns] | |
selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns] | |
# Drop missing values | |
selected_df = selected_df.dropna() | |
# Create the scatter plots using seaborn's pairplot | |
sns.set_theme(style="ticks") | |
pairplot_fig = sns.pairplot(selected_df) | |
# Display the pairplot in Streamlit | |
st.pyplot(pairplot_fig) | |
elif selected_country == 'Overall': | |
def get_forecast_columns(country_code): | |
if country_code in countries_all_RES: | |
return forecast_columns_all_RES | |
elif country_code in countries_no_offshore: | |
return forecast_columns_no_wind_offshore | |
else: | |
print('Country code doesnt correspond.') | |
def calculate_net_load_error(df, country_code): | |
forecast_columns = get_forecast_columns(country_code) | |
filter_df = df[forecast_columns].dropna() | |
# Initialize net_load and net_load_forecast with Load and other available data | |
net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Solar_entsoe'] | |
net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe'] | |
# Subtract Wind_offshore_entsoe if the column exists | |
if 'Wind_offshore_entsoe' in filter_df.columns: | |
net_load -= filter_df['Wind_offshore_entsoe'] | |
# Subtract Wind_offshore_forecast_entsoe if the column exists | |
if 'Wind_offshore_forecast_entsoe' in filter_df.columns: | |
net_load_forecast -= filter_df['Wind_offshore_forecast_entsoe'] | |
# Calculate the error based on the latest values | |
error = (net_load_forecast - net_load).iloc[-1] | |
date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format | |
return error, date | |
def plot_net_load_error_map(data_dict): | |
# Calculate net load errors and dates for each country | |
net_load_errors = {country_code: calculate_net_load_error(data, country_code) for country_code, data in data_dict.items()} | |
# Use country codes directly | |
selected_country_codes = list(data_dict.keys()) | |
df_net_load_error = pd.DataFrame({ | |
'zoneName': selected_country_codes, | |
'net_load_error': [v[0] for v in net_load_errors.values()], | |
'date': [v[1] for v in net_load_errors.values()] | |
}) | |
# Load the GeoJSON data using the entsoe library | |
date = pd.Timestamp.now() | |
geo_data = load_zones(selected_country_codes, date) | |
# Reset index to include 'zoneName' as a column | |
geo_data = geo_data.reset_index() | |
# Map country codes to country names | |
countries_code_to_name = {v: k for k, v in countries.items()} | |
geo_data['name'] = geo_data['zoneName'].map(countries_code_to_name) | |
# Merge net_load_error and date into geo_data | |
geo_data = geo_data.merge(df_net_load_error, on='zoneName', how='left') | |
# Initialize the Folium map | |
m = folium.Map(location=[46.6034, 1.8883], zoom_start=4, tiles="cartodb positron") | |
# Calculate the maximum absolute net load error for normalization | |
max_value = df_net_load_error['net_load_error'].abs().max() | |
# Create a colormap with lighter shades | |
colormap = branca.colormap.LinearColormap( | |
colors=['#0D92F4', 'white', '#C62E2E'], # Light blue to white to light coral | |
vmin=-max_value, | |
vmax=max_value, | |
caption='Net Load Error [MW]' | |
) | |
# Define the style function | |
def style_function(feature): | |
net_load_error = feature['properties']['net_load_error'] | |
if net_load_error is None: | |
return {'fillOpacity': 0.5, 'color': 'grey', 'weight': 0.5} | |
else: | |
fill_color = colormap(net_load_error) | |
return { | |
'fillColor': fill_color, | |
'fillOpacity': 0.8, # Set a constant opacity | |
'color': 'black', | |
'weight': 0.5 | |
} | |
# Add the GeoJson layer with the custom style_function | |
folium.GeoJson( | |
geo_data, | |
style_function=style_function, | |
tooltip=folium.GeoJsonTooltip( | |
fields=["name", "net_load_error", "date"], | |
aliases=["Country:", "Net Load Error [MW]:", "Date:"], | |
localize=True | |
) | |
).add_to(m) | |
# Add the colormap to the map | |
colormap.add_to(m) | |
# Display the map | |
_ = st_folium(m, width=700, height=600) | |
def calculate_mae(actual, forecast): | |
return np.mean(np.abs(actual - forecast)) | |
def calculate_persistence_mae(data, shift_hours): | |
return np.mean(np.abs(data - data.shift(shift_hours))) | |
def calculate_rmae_for_country(df): | |
rmae = {} | |
rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168) | |
rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24) | |
# Only calculate Wind_offshore rMAE if the columns exist | |
if 'Wind_offshore_entsoe' in df.columns and 'Wind_offshore_forecast_entsoe' in df.columns: | |
rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24) | |
else: | |
rmae['Wind_offshore'] = None # Mark as None if not applicable | |
rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24) | |
return rmae | |
def create_rmae_dataframe(data_dict): | |
rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []} | |
for country_name, df in data_dict.items(): | |
forecast_columns=get_forecast_columns(country_name) | |
df_filtered = df[forecast_columns].dropna() | |
rmae = calculate_rmae_for_country(df_filtered) | |
rmae_values['Country'].append(country_name) | |
rmae_values['Load'].append(rmae['Load']) | |
rmae_values['Wind_onshore'].append(rmae['Wind_onshore']) | |
rmae_values['Solar'].append(rmae['Solar']) | |
# Append Wind_offshore rMAE only if it's not None (i.e., the country has offshore wind data) | |
if rmae['Wind_offshore'] is not None: | |
rmae_values['Wind_offshore'].append(rmae['Wind_offshore']) | |
else: | |
rmae_values['Wind_offshore'].append(np.nan) # Insert NaN for countries without offshore wind | |
return pd.DataFrame(rmae_values) | |
def plot_rmae_radar_chart(rmae_df): | |
fig = go.Figure() | |
# Dynamically adjust angles to exclude Wind_offshore if all values are NaN | |
angles = ['Load', 'Wind_onshore', 'Solar'] | |
if not rmae_df['Wind_offshore'].isna().all(): # Only include Wind_offshore if it's not NaN for all countries | |
angles.append('Wind_offshore') | |
for _, row in rmae_df.iterrows(): | |
fig.add_trace(go.Scatterpolar( | |
r=[row[angle] for angle in angles], | |
theta=angles, | |
fill='toself', | |
name=row['Country'] | |
)) | |
fig.update_layout( | |
polar=dict( | |
radialaxis=dict(visible=True, range=[0, 1.2]) | |
), | |
showlegend=True, | |
title="rMAE Radar Chart by Country" | |
) | |
st.plotly_chart(fig) | |
st.subheader("Net Load Error Map") | |
st.write(""" | |
The net load error map highlights the error in the forecasted versus actual net load for each country. | |
Hover over each country to see details on the latest net load error and the timestamp (with the time zone of the corresponding country) of the last recorded data. | |
""") | |
plot_net_load_error_map(data_dict) | |
st.subheader("rMAE of Forecasts published on ENTSO-E TP") | |
st.write("""The rMAE of Forecasts chart compares the forecast accuracy of the predictions published by ENTSO-E Transparency Platform for Portugal, Spain, Belgium, France, Germany-Luxembourg, Austria, the Netherlands, Italy and Denmark. It shows the rMAE for onshore wind, offshore wind (if any), solar, and load demand, highlighting how well forecasts perform relative to a basic persistence model across these countries and energy sectors.""") | |
rmae_df = create_rmae_dataframe(data_dict) | |
# Add multiselect for country selection | |
selected_countries = st.multiselect("Select Countries for Radar Plot", options=rmae_df['Country'].unique(), default=['BE', 'DE_LU', 'FR']) | |
# Filter the dataframe based on the selected countries | |
filtered_rmae_df = rmae_df[rmae_df['Country'].isin(selected_countries)] | |
# Plot radar chart for the selected countries | |
plot_rmae_radar_chart(filtered_rmae_df) | |