Spaces:
Runtime error
Runtime error
attila-balint-kul
commited on
Commit
•
f7b117b
1
Parent(s):
fa64f07
Upload 8 files
Browse files- .gitignore +1 -0
- .streamlit/secrets.toml +2 -0
- app.py +84 -0
- components.py +415 -0
- images/energyville_logo.png +0 -0
- images/ku_leuven_logo.png +0 -0
- requirements.txt +2 -0
- utils.py +44 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.streamlit/
|
.streamlit/secrets.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wandb_entity = "attila-balint-kul"
|
2 |
+
wandb_api_key = "70458ee5feafed530c7656bada194778e034813b"
|
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from components import (
|
4 |
+
buildings_view,
|
5 |
+
models_view,
|
6 |
+
performance_view,
|
7 |
+
computation_view,
|
8 |
+
logos,
|
9 |
+
model_selector,
|
10 |
+
header,
|
11 |
+
overview_view,
|
12 |
+
)
|
13 |
+
import utils
|
14 |
+
|
15 |
+
PAGES = [
|
16 |
+
"Overview",
|
17 |
+
"Buildings",
|
18 |
+
"Models",
|
19 |
+
"Performance",
|
20 |
+
"Computational Resources",
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
st.set_page_config(page_title="Gas Demand Dashboard", layout="wide")
|
25 |
+
|
26 |
+
|
27 |
+
@st.cache_data(ttl=86400)
|
28 |
+
def fetch_data():
|
29 |
+
return utils.get_wandb_data(
|
30 |
+
entity=st.secrets["wandb_entity"],
|
31 |
+
project="enfobench-gas-demand",
|
32 |
+
api_key=st.secrets["wandb_api_key"],
|
33 |
+
job_type="metrics",
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
# Load data
|
38 |
+
data = fetch_data()
|
39 |
+
|
40 |
+
# Extract models
|
41 |
+
models = sorted(data["model"].unique().tolist())
|
42 |
+
|
43 |
+
|
44 |
+
with st.sidebar:
|
45 |
+
logos()
|
46 |
+
view = st.selectbox("View", PAGES, index=0)
|
47 |
+
|
48 |
+
if view == "Performance" or view == "Computational Resources":
|
49 |
+
models_to_plot = model_selector(models)
|
50 |
+
|
51 |
+
if view == "Overview":
|
52 |
+
st.header("Sources")
|
53 |
+
st.link_button("GitHub Repository", url="https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit", use_container_width=True)
|
54 |
+
st.link_button("Documentation", url="https://attila-balint-kul.github.io/energy-forecast-benchmark-toolkit/", use_container_width=True)
|
55 |
+
st.link_button("Electricity Demand Dataset", url="https://huggingface.co/datasets/EDS-lab/electricity-demand", use_container_width=True)
|
56 |
+
st.link_button("HuggingFace Organization", url="https://huggingface.co/EDS-lab", use_container_width=True)
|
57 |
+
|
58 |
+
st.header("Other Dashboards")
|
59 |
+
st.link_button("Electricity Demand", url="https://huggingface.co/spaces/EDS-lab/EnFoBench-ElectricityDemand", use_container_width=True)
|
60 |
+
st.link_button("PV Generation", url="https://huggingface.co/spaces/EDS-lab/EnFoBench-PVGeneration", use_container_width=True)
|
61 |
+
|
62 |
+
st.header("Refresh data")
|
63 |
+
refresh = st.button(
|
64 |
+
"Refresh", use_container_width=True, help="Fetch the latest data from W&B"
|
65 |
+
)
|
66 |
+
if refresh:
|
67 |
+
fetch_data.clear()
|
68 |
+
st.rerun()
|
69 |
+
|
70 |
+
|
71 |
+
header()
|
72 |
+
|
73 |
+
if view == "Overview":
|
74 |
+
overview_view(data)
|
75 |
+
elif view == "Buildings":
|
76 |
+
buildings_view(data)
|
77 |
+
elif view == "Models":
|
78 |
+
models_view(data)
|
79 |
+
elif view == "Performance":
|
80 |
+
performance_view(data, models_to_plot)
|
81 |
+
elif view == "Computational Resources":
|
82 |
+
computation_view(data, models_to_plot)
|
83 |
+
else:
|
84 |
+
st.write("Not implemented yet")
|
components.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import plotly.express as px
|
4 |
+
|
5 |
+
from utils import get_leaderboard
|
6 |
+
|
7 |
+
|
8 |
+
def header() -> None:
|
9 |
+
st.title("EnFoBench - Gas Demand")
|
10 |
+
st.divider()
|
11 |
+
|
12 |
+
|
13 |
+
def logos() -> None:
|
14 |
+
left, right = st.columns(2)
|
15 |
+
with left:
|
16 |
+
st.image("./images/ku_leuven_logo.png")
|
17 |
+
with right:
|
18 |
+
st.image("./images/energyville_logo.png")
|
19 |
+
|
20 |
+
|
21 |
+
def model_selector(models: list[str]) -> set[str]:
|
22 |
+
# Group models by their prefix
|
23 |
+
model_groups: dict[str, list[str]] = {}
|
24 |
+
for model in models:
|
25 |
+
group, model_name = model.split(".", maxsplit=1)
|
26 |
+
if group not in model_groups:
|
27 |
+
model_groups[group] = []
|
28 |
+
model_groups[group].append(model_name)
|
29 |
+
|
30 |
+
models_to_plot = set()
|
31 |
+
|
32 |
+
st.header("Models to include")
|
33 |
+
left, right = st.columns(2)
|
34 |
+
with left:
|
35 |
+
select_none = st.button("Select None", use_container_width=True)
|
36 |
+
if select_none:
|
37 |
+
for model in models:
|
38 |
+
st.session_state[model] = False
|
39 |
+
with right:
|
40 |
+
select_all = st.button("Select All", use_container_width=True)
|
41 |
+
if select_all:
|
42 |
+
for model in models:
|
43 |
+
st.session_state[model] = True
|
44 |
+
|
45 |
+
for model_group, models in model_groups.items():
|
46 |
+
st.text(model_group)
|
47 |
+
for model_name in models:
|
48 |
+
to_plot = st.checkbox(
|
49 |
+
model_name, value=True, key=f"{model_group}.{model_name}"
|
50 |
+
)
|
51 |
+
if to_plot:
|
52 |
+
models_to_plot.add(f"{model_group}.{model_name}")
|
53 |
+
return models_to_plot
|
54 |
+
|
55 |
+
|
56 |
+
def overview_view(data):
|
57 |
+
st.markdown(
|
58 |
+
"""
|
59 |
+
[EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit)
|
60 |
+
is a community driven benchmarking framework for energy forecasting models.
|
61 |
+
|
62 |
+
This dashboard presents the results of the gas demand forecasting usecase. All models were cross-validated
|
63 |
+
on **365 days** of day ahead forecasting horizon *(10AM until midnight of the next day)*.
|
64 |
+
"""
|
65 |
+
)
|
66 |
+
|
67 |
+
st.divider()
|
68 |
+
st.markdown("## Leaderboard")
|
69 |
+
|
70 |
+
leaderboard = get_leaderboard(data, ["MAE.mean", "RMSE.mean", "rMAE.mean"])
|
71 |
+
|
72 |
+
left, middle, right = st.columns(3)
|
73 |
+
with left:
|
74 |
+
best_models_mae = (
|
75 |
+
leaderboard.sort_values("MAE.mean", ascending=False)
|
76 |
+
.head(10)
|
77 |
+
.sort_values("MAE.mean")
|
78 |
+
)
|
79 |
+
fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index)
|
80 |
+
fig.update_layout(
|
81 |
+
title="Top 10 models by MAE", xaxis_title="", yaxis_title="Model"
|
82 |
+
)
|
83 |
+
st.plotly_chart(fig, use_container_width=True)
|
84 |
+
|
85 |
+
with middle:
|
86 |
+
best_models_mae = (
|
87 |
+
leaderboard.sort_values("RMSE.mean", ascending=False)
|
88 |
+
.head(10)
|
89 |
+
.sort_values("RMSE.mean")
|
90 |
+
)
|
91 |
+
fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index)
|
92 |
+
fig.update_layout(title="Top 10 models by RMSE", xaxis_title="", yaxis_title="")
|
93 |
+
st.plotly_chart(fig, use_container_width=True)
|
94 |
+
|
95 |
+
with right:
|
96 |
+
best_models_mae = (
|
97 |
+
leaderboard.sort_values("rMAE.mean", ascending=False)
|
98 |
+
.head(10)
|
99 |
+
.sort_values("rMAE.mean")
|
100 |
+
)
|
101 |
+
fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index)
|
102 |
+
fig.update_layout(title="Top 10 models by rMAE", xaxis_title="", yaxis_title="")
|
103 |
+
st.plotly_chart(fig, use_container_width=True)
|
104 |
+
|
105 |
+
st.dataframe(leaderboard, use_container_width=True)
|
106 |
+
|
107 |
+
|
108 |
+
def buildings_view(data):
|
109 |
+
buildings = (
|
110 |
+
data[
|
111 |
+
[
|
112 |
+
"unique_id",
|
113 |
+
"metadata.cluster_size",
|
114 |
+
"metadata.building_class",
|
115 |
+
"metadata.location_id",
|
116 |
+
"metadata.timezone",
|
117 |
+
"dataset.available_history.days",
|
118 |
+
]
|
119 |
+
]
|
120 |
+
.groupby("unique_id")
|
121 |
+
.first()
|
122 |
+
.rename(
|
123 |
+
columns={
|
124 |
+
"metadata.cluster_size": "Cluster size",
|
125 |
+
"metadata.building_class": "Building class",
|
126 |
+
"metadata.location_id": "Location ID",
|
127 |
+
"metadata.timezone": "Timezone",
|
128 |
+
"dataset.available_history.days": "Available history (days)",
|
129 |
+
}
|
130 |
+
)
|
131 |
+
)
|
132 |
+
|
133 |
+
st.metric("Number of buildings", len(buildings))
|
134 |
+
st.divider()
|
135 |
+
|
136 |
+
st.markdown("### Buildings")
|
137 |
+
st.dataframe(
|
138 |
+
buildings,
|
139 |
+
use_container_width=True,
|
140 |
+
column_config={
|
141 |
+
"Available history (days)": st.column_config.ProgressColumn(
|
142 |
+
"Available history (days)",
|
143 |
+
help="Available training data during the first prediction.",
|
144 |
+
format="%f",
|
145 |
+
min_value=0,
|
146 |
+
max_value=float(buildings["Available history (days)"].max()),
|
147 |
+
),
|
148 |
+
},
|
149 |
+
)
|
150 |
+
|
151 |
+
left, right = st.columns(2, gap="large")
|
152 |
+
with left:
|
153 |
+
st.markdown("#### Building classes")
|
154 |
+
fig = px.pie(
|
155 |
+
buildings.groupby("Building class").size().reset_index(),
|
156 |
+
values=0,
|
157 |
+
names="Building class",
|
158 |
+
)
|
159 |
+
st.plotly_chart(fig, use_container_width=True)
|
160 |
+
|
161 |
+
with right:
|
162 |
+
st.markdown("#### Timezones")
|
163 |
+
fig = px.pie(
|
164 |
+
buildings.groupby("Timezone").size().reset_index(),
|
165 |
+
values=0,
|
166 |
+
names="Timezone",
|
167 |
+
)
|
168 |
+
st.plotly_chart(fig, use_container_width=True)
|
169 |
+
|
170 |
+
|
171 |
+
def models_view(data):
|
172 |
+
models = (
|
173 |
+
data[
|
174 |
+
[
|
175 |
+
"model",
|
176 |
+
"cv_config.folds",
|
177 |
+
"cv_config.horizon",
|
178 |
+
"cv_config.step",
|
179 |
+
"cv_config.time",
|
180 |
+
"model_info.repository",
|
181 |
+
"model_info.tag",
|
182 |
+
"model_info.variate_type",
|
183 |
+
]
|
184 |
+
]
|
185 |
+
.groupby("model")
|
186 |
+
.first()
|
187 |
+
.rename(
|
188 |
+
columns={
|
189 |
+
"cv_config.folds": "CV Folds",
|
190 |
+
"cv_config.horizon": "CV Horizon",
|
191 |
+
"cv_config.step": "CV Step",
|
192 |
+
"cv_config.time": "CV Time",
|
193 |
+
"model_info.repository": "Image Repository",
|
194 |
+
"model_info.tag": "Image Tag",
|
195 |
+
"model_info.variate_type": "Variate type",
|
196 |
+
}
|
197 |
+
)
|
198 |
+
)
|
199 |
+
|
200 |
+
st.metric("Number of models", len(models))
|
201 |
+
st.divider()
|
202 |
+
|
203 |
+
st.markdown("### Models")
|
204 |
+
st.dataframe(models, use_container_width=True)
|
205 |
+
|
206 |
+
left, right = st.columns(2, gap="large")
|
207 |
+
with left:
|
208 |
+
st.markdown("#### Variate types")
|
209 |
+
fig = px.pie(
|
210 |
+
models.groupby("Variate type").size().reset_index(),
|
211 |
+
values=0,
|
212 |
+
names="Variate type",
|
213 |
+
)
|
214 |
+
st.plotly_chart(fig, use_container_width=True)
|
215 |
+
|
216 |
+
with right:
|
217 |
+
st.markdown("#### Frameworks")
|
218 |
+
_df = models.copy()
|
219 |
+
_df["Framework"] = _df.index.str.split(".").str[0]
|
220 |
+
fig = px.pie(
|
221 |
+
_df.groupby("Framework").size().reset_index(),
|
222 |
+
values=0,
|
223 |
+
names="Framework",
|
224 |
+
)
|
225 |
+
st.plotly_chart(fig, use_container_width=True)
|
226 |
+
|
227 |
+
|
228 |
+
def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
229 |
+
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
|
230 |
+
by="model", ascending=True
|
231 |
+
)
|
232 |
+
|
233 |
+
left, right = st.columns(2, gap="small")
|
234 |
+
with left:
|
235 |
+
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
|
236 |
+
with right:
|
237 |
+
aggregation = st.selectbox(
|
238 |
+
"Aggregation", ["min", "mean", "median", "max", "std"], index=1
|
239 |
+
)
|
240 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} per building")
|
241 |
+
|
242 |
+
rank_df = (
|
243 |
+
data_to_plot.groupby(["model"])
|
244 |
+
.agg("median", numeric_only=True)
|
245 |
+
.sort_values(by=f"{metric}.{aggregation}")
|
246 |
+
.reset_index()
|
247 |
+
.rename_axis("rank")
|
248 |
+
.reset_index()[["rank", "model"]]
|
249 |
+
)
|
250 |
+
|
251 |
+
fig = px.box(
|
252 |
+
data_to_plot.merge(rank_df, on="model").sort_values(by="rank"),
|
253 |
+
x=f"{metric}.{aggregation}",
|
254 |
+
y="model",
|
255 |
+
color="model",
|
256 |
+
points="all",
|
257 |
+
)
|
258 |
+
fig.update_layout(showlegend=False, height=40 * len(models_to_plot))
|
259 |
+
st.plotly_chart(fig, use_container_width=True)
|
260 |
+
|
261 |
+
st.divider()
|
262 |
+
|
263 |
+
left, right = st.columns(2, gap="large")
|
264 |
+
with left:
|
265 |
+
x_metric = st.selectbox(
|
266 |
+
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric"
|
267 |
+
)
|
268 |
+
x_aggregation = st.selectbox(
|
269 |
+
"Aggregation",
|
270 |
+
["min", "mean", "median", "max", "std"],
|
271 |
+
index=1,
|
272 |
+
key="x_aggregation",
|
273 |
+
)
|
274 |
+
with right:
|
275 |
+
y_metric = st.selectbox(
|
276 |
+
"Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric"
|
277 |
+
)
|
278 |
+
y_aggregation = st.selectbox(
|
279 |
+
"Aggregation",
|
280 |
+
["min", "mean", "median", "max", "std"],
|
281 |
+
index=1,
|
282 |
+
key="y_aggregation",
|
283 |
+
)
|
284 |
+
|
285 |
+
st.markdown(
|
286 |
+
f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}"
|
287 |
+
)
|
288 |
+
fig = px.scatter(
|
289 |
+
data_to_plot,
|
290 |
+
x=f"{x_metric}.{x_aggregation}",
|
291 |
+
y=f"{y_metric}.{y_aggregation}",
|
292 |
+
color="model",
|
293 |
+
)
|
294 |
+
fig.update_layout(height=600)
|
295 |
+
st.plotly_chart(fig, use_container_width=True)
|
296 |
+
|
297 |
+
st.divider()
|
298 |
+
|
299 |
+
left, right = st.columns(2, gap="small")
|
300 |
+
with left:
|
301 |
+
metric = st.selectbox(
|
302 |
+
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric"
|
303 |
+
)
|
304 |
+
with right:
|
305 |
+
aggregation = st.selectbox(
|
306 |
+
"Aggregation across folds",
|
307 |
+
["min", "mean", "median", "max", "std"],
|
308 |
+
index=1,
|
309 |
+
key="table_aggregation",
|
310 |
+
)
|
311 |
+
|
312 |
+
metrics_table = data_to_plot.groupby(["model"]).agg(
|
313 |
+
aggregation, numeric_only=True
|
314 |
+
)[
|
315 |
+
[
|
316 |
+
f"{metric}.min",
|
317 |
+
f"{metric}.mean",
|
318 |
+
f"{metric}.median",
|
319 |
+
f"{metric}.max",
|
320 |
+
f"{metric}.std",
|
321 |
+
]
|
322 |
+
]
|
323 |
+
|
324 |
+
def custom_table(styler):
|
325 |
+
styler.background_gradient(cmap="seismic", axis=0)
|
326 |
+
styler.format(precision=2)
|
327 |
+
|
328 |
+
# center text and increase font size
|
329 |
+
styler.map(lambda x: "text-align: center; font-size: 14px;")
|
330 |
+
return styler
|
331 |
+
|
332 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
|
333 |
+
styled_table = metrics_table.style.pipe(custom_table)
|
334 |
+
st.dataframe(styled_table, use_container_width=True)
|
335 |
+
|
336 |
+
metrics_per_building_table = (
|
337 |
+
data_to_plot.groupby(["model", "unique_id"])
|
338 |
+
.apply(aggregation, numeric_only=True)
|
339 |
+
.reset_index()
|
340 |
+
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
|
341 |
+
)
|
342 |
+
metrics_per_building_table.insert(
|
343 |
+
0, "median", metrics_per_building_table.median(axis=1)
|
344 |
+
)
|
345 |
+
metrics_per_building_table.insert(
|
346 |
+
0, "mean", metrics_per_building_table.mean(axis=1)
|
347 |
+
)
|
348 |
+
metrics_per_building_table = metrics_per_building_table.sort_values(by="mean")
|
349 |
+
|
350 |
+
def custom_table(styler):
|
351 |
+
styler.background_gradient(cmap="seismic", axis=None)
|
352 |
+
styler.format(precision=2)
|
353 |
+
|
354 |
+
# center text and increase font size
|
355 |
+
styler.map(lambda x: "text-align: center; font-size: 14px;")
|
356 |
+
return styler
|
357 |
+
|
358 |
+
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
|
359 |
+
styled_table = metrics_per_building_table.style.pipe(custom_table)
|
360 |
+
st.dataframe(styled_table, use_container_width=True)
|
361 |
+
|
362 |
+
|
363 |
+
def computation_view(data, models_to_plot: set[str]):
|
364 |
+
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
|
365 |
+
by="model", ascending=True
|
366 |
+
)
|
367 |
+
|
368 |
+
st.markdown("#### Computational Resources")
|
369 |
+
fig = px.parallel_coordinates(
|
370 |
+
data_to_plot.groupby("model").mean(numeric_only=True).reset_index(),
|
371 |
+
dimensions=[
|
372 |
+
"model",
|
373 |
+
"resource_usage.CPU",
|
374 |
+
"resource_usage.memory",
|
375 |
+
"MAE.mean",
|
376 |
+
"RMSE.mean",
|
377 |
+
"MBE.mean",
|
378 |
+
"rMAE.mean",
|
379 |
+
],
|
380 |
+
color="rMAE.mean",
|
381 |
+
color_continuous_scale=px.colors.diverging.Portland,
|
382 |
+
)
|
383 |
+
st.plotly_chart(fig, use_container_width=True)
|
384 |
+
|
385 |
+
st.divider()
|
386 |
+
|
387 |
+
left, center, right = st.columns(3, gap="small")
|
388 |
+
with left:
|
389 |
+
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
|
390 |
+
with center:
|
391 |
+
aggregation_per_building = st.selectbox(
|
392 |
+
"Aggregation per building", ["min", "mean", "median", "max", "std"], index=1
|
393 |
+
)
|
394 |
+
with right:
|
395 |
+
aggregation_per_model = st.selectbox(
|
396 |
+
"Aggregation per model", ["min", "mean", "median", "max", "std"], index=1
|
397 |
+
)
|
398 |
+
|
399 |
+
st.markdown(
|
400 |
+
f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage"
|
401 |
+
)
|
402 |
+
aggregated_data = (
|
403 |
+
data_to_plot.groupby("model")
|
404 |
+
.agg(aggregation_per_building, numeric_only=True)
|
405 |
+
.reset_index()
|
406 |
+
)
|
407 |
+
fig = px.scatter(
|
408 |
+
aggregated_data,
|
409 |
+
x="resource_usage.CPU",
|
410 |
+
y=f"{metric}.{aggregation_per_model}",
|
411 |
+
color="model",
|
412 |
+
log_x=True,
|
413 |
+
)
|
414 |
+
fig.update_layout(height=600)
|
415 |
+
st.plotly_chart(fig, use_container_width=True)
|
images/energyville_logo.png
ADDED
images/ku_leuven_logo.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
wandb==0.17.0
|
2 |
+
plotly==5.20.0
|
utils.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import wandb
|
3 |
+
|
4 |
+
|
5 |
+
def get_wandb_data(entity: str, project: str, api_key: str, job_type: str) -> pd.DataFrame:
|
6 |
+
api = wandb.Api(api_key=api_key)
|
7 |
+
|
8 |
+
# Project is specified by <entity/project-name>
|
9 |
+
filter_dict = {"jobType": job_type}
|
10 |
+
runs = api.runs(f"{entity}/{project}", filters=filter_dict)
|
11 |
+
|
12 |
+
summary_list, config_list, name_list = [], [], []
|
13 |
+
for run in runs:
|
14 |
+
# .summary contains the output keys/values for metrics like accuracy.
|
15 |
+
# We call ._json_dict to omit large files
|
16 |
+
summary_list.append(run.summary._json_dict)
|
17 |
+
|
18 |
+
# .config contains the hyperparameters.
|
19 |
+
# We remove special values that start with _.
|
20 |
+
config_list.append({k: v for k, v in run.config.items()})
|
21 |
+
|
22 |
+
# .name is the human-readable name of the run.
|
23 |
+
name_list.append(run.name)
|
24 |
+
|
25 |
+
summary_df = pd.json_normalize(summary_list, max_level=1)
|
26 |
+
config_df = pd.json_normalize(config_list, max_level=2)
|
27 |
+
runs_df = pd.concat([summary_df, config_df], axis=1)
|
28 |
+
runs_df.index = name_list
|
29 |
+
return runs_df
|
30 |
+
|
31 |
+
|
32 |
+
def get_leaderboard(runs_df: pd.DataFrame, metrics: list[str]) -> pd.DataFrame:
|
33 |
+
leaderboard = pd.DataFrame(
|
34 |
+
index=runs_df['model'].unique(),
|
35 |
+
columns=metrics
|
36 |
+
).fillna(0)
|
37 |
+
|
38 |
+
for _, building_df in runs_df.groupby("unique_id"):
|
39 |
+
for column in leaderboard.columns:
|
40 |
+
best_model = building_df.loc[building_df[column].idxmin()].model
|
41 |
+
leaderboard.loc[best_model, column] += 1
|
42 |
+
|
43 |
+
leaderboard = leaderboard.sort_values(by=list(leaderboard.columns), ascending=False)
|
44 |
+
return leaderboard
|