Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -57,20 +57,12 @@ else:
|
|
57 |
temp_df = df[(df['Date'] >= pd.Timestamp(start_date))] #& (df['Date'] <= pd.Timestamp(end_date))]
|
58 |
fig = go.Figure()
|
59 |
|
60 |
-
# Updated labels for each variable
|
61 |
-
variable_labels = {
|
62 |
-
'Price': 'Real Price',
|
63 |
-
'DNN': 'DNN Forecast',
|
64 |
-
'LEAR': 'LEAR Forecast',
|
65 |
-
'Persis': 'Persistence Forecast'
|
66 |
-
}
|
67 |
-
|
68 |
for variable in selected_variables:
|
69 |
fig.add_trace(go.Scatter(x=temp_df['Date'], y=temp_df[variable], mode='lines', name=variable))
|
70 |
|
71 |
fig.update_layout(xaxis_title="Date", yaxis_title="Price [EUR/MWh]")
|
72 |
st.plotly_chart(fig, use_container_width=True)
|
73 |
-
st.write("The graph presented here illustrates the day-ahead electricity price forecasts for Belgium, covering the period from one week ago up to tomorrow. It incorporates predictions from three distinct models:
|
74 |
|
75 |
|
76 |
if not selected_variables:
|
|
|
57 |
temp_df = df[(df['Date'] >= pd.Timestamp(start_date))] #& (df['Date'] <= pd.Timestamp(end_date))]
|
58 |
fig = go.Figure()
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
for variable in selected_variables:
|
61 |
fig.add_trace(go.Scatter(x=temp_df['Date'], y=temp_df[variable], mode='lines', name=variable))
|
62 |
|
63 |
fig.update_layout(xaxis_title="Date", yaxis_title="Price [EUR/MWh]")
|
64 |
st.plotly_chart(fig, use_container_width=True)
|
65 |
+
st.write("The graph presented here illustrates the day-ahead electricity price forecasts for Belgium, covering the period from one week ago up to tomorrow. It incorporates predictions from three distinct models: a Neural Network, a Regularized Linear Model, and Persistence, alongside the actual electricity prices up until today.")
|
66 |
|
67 |
|
68 |
if not selected_variables:
|