Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,12 @@ import plotly.graph_objs as go
|
|
5 |
from io import BytesIO
|
6 |
from datasets import load_dataset
|
7 |
|
8 |
-
df = load_dataset("mmmapms/Forecasts")
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
'Price': 'Real Price',
|
12 |
'DNN1': 'Neural Network 1',
|
13 |
'DNN2': 'Neural Network 2',
|
@@ -21,33 +24,12 @@ df = df.rename(columns={
|
|
21 |
'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
22 |
'Persis': 'Persistence Model',
|
23 |
'Hybrid_Ensemble': 'Hybrid Ensemble'
|
24 |
-
|
25 |
-
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
26 |
-
df_filtered = df.dropna(subset=['Real Price'])
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# df = pd.read_csv('Predictions.csv')
|
31 |
-
# df = df.rename(columns={
|
32 |
-
# 'Price': 'Real Price',
|
33 |
-
# 'DNN1': 'Neural Network 1',
|
34 |
-
# 'DNN2': 'Neural Network 2',
|
35 |
-
# 'DNN3': 'Neural Network 3',
|
36 |
-
# 'DNN4': 'Neural Network 4',
|
37 |
-
# 'DNN_Ensemble': 'Neural Network Ensemble',
|
38 |
-
# 'LEAR56': 'Regularized Linear Model 1',
|
39 |
-
# 'LEAR84': 'Regularized Linear Model 2',
|
40 |
-
# 'LEAR112': 'Regularized Linear Model 3',
|
41 |
-
# 'LEAR730': 'Regularized Linear Model 4',
|
42 |
-
# 'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
43 |
-
# 'Persis': 'Persistence Model',
|
44 |
-
# 'Hybrid_Ensemble': 'Hybrid Ensemble'
|
45 |
-
#})
|
46 |
-
# df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
47 |
-
# df_filtered = df.dropna(subset=['Real Price'])
|
48 |
-
# return df, df_filtered
|
49 |
-
|
50 |
-
#df, df_filtered = load_data_predictions()
|
51 |
|
52 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
53 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|
|
|
5 |
from io import BytesIO
|
6 |
from datasets import load_dataset
|
7 |
|
|
|
8 |
|
9 |
+
|
10 |
+
@st.cache_data
|
11 |
+
def load_data_predictions():
|
12 |
+
df = pd.read_csv('Predictions.csv')
|
13 |
+
df = df.rename(columns={
|
14 |
'Price': 'Real Price',
|
15 |
'DNN1': 'Neural Network 1',
|
16 |
'DNN2': 'Neural Network 2',
|
|
|
24 |
'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
25 |
'Persis': 'Persistence Model',
|
26 |
'Hybrid_Ensemble': 'Hybrid Ensemble'
|
27 |
+
})
|
28 |
+
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
29 |
+
df_filtered = df.dropna(subset=['Real Price'])
|
30 |
+
return df, df_filtered
|
31 |
+
|
32 |
+
df, df_filtered = load_data_predictions()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
35 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|