Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.graph_objs as go | |
from io import BytesIO | |
# Function to convert df to csv for download | |
def convert_df_to_csv(df): | |
return df.to_csv(index=False).encode('utf-8') | |
# Load your data | |
def load_data_elia(): | |
df = pd.read_csv('DATA_ELIA.csv') | |
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True) | |
return df | |
# Caching data loading for Predictions.csv | |
def load_data_predictions(): | |
df = pd.read_csv('Predictions.csv') | |
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True) | |
df_filtered = df.dropna(subset=['Price']) | |
return df, df_filtered | |
# Load your data | |
df_input = load_data_elia() | |
df, df_filtered = load_data_predictions() | |
# Determine the first and last date | |
min_date_allowed = df_input['Date'].min().date() | |
max_date_allowed = df_input['Date'].max().date() | |
min_date_allowed_pred = df_filtered['Date'].min().date() | |
max_date_allowed_pred = df_filtered['Date'].max().date() | |
end_date = df['Date'].max().date() | |
start_date = end_date - pd.Timedelta(days=7) | |
st.title("Belgium: Electricity Price Forecasting") | |
# Sidebar for inputs | |
with st.sidebar: | |
st.write("### Variables Selection for Graph") | |
st.write("Select which variables you'd like to include in the graph. This will affect the displayed charts and available data for download.") | |
selected_variables = st.multiselect("Select variables to display:", options=['Price', 'DNN', 'LEAR', 'Persis'], default=['Price', 'DNN', 'LEAR', 'Persis']) | |
st.write("### Date Range for Metrics Calculation") | |
st.write("Select the date range to calculate the metrics for the predictions. This will influence the accuracy metrics displayed below. The complete dataset ranges from 10/03/2024 until today.") | |
start_date_pred, end_date_pred = st.date_input("Select Date Range for Metrics Calculation:", [min_date_allowed_pred, max_date_allowed_pred]) | |
st.write("### Model Selection for Scatter Plot") | |
model_selection = st.selectbox("Select which model's predictions to display:", options=['DNN', 'LEAR', 'Persistence'], index=0) # Default to 'DNN' | |
# Main content | |
if not selected_variables: | |
st.warning("Please select at least one variable to display.") | |
else: | |
# Plotting | |
st.write("## Belgian Day-Ahead Electricity Prices") | |
temp_df = df[(df['Date'] >= pd.Timestamp(start_date))] #& (df['Date'] <= pd.Timestamp(end_date))] | |
fig = go.Figure() | |
# Updated labels for each variable | |
variable_labels = { | |
'Price': 'Real Price', | |
'DNN': 'DNN Forecast', | |
'LEAR': 'LEAR Forecast', | |
'Persis': 'Persistence Forecast' | |
} | |
for variable in selected_variables: | |
fig.add_trace(go.Scatter(x=temp_df['Date'], y=temp_df[variable], mode='lines', name=variable_labels[variable])) | |
fig.update_layout(xaxis_title="Date", yaxis_title="Price [EUR/MWh]") | |
st.plotly_chart(fig, use_container_width=True) | |
st.write("The graph presented here illustrates the day-ahead electricity price forecasts for Belgium, covering the period from one week ago up to tomorrow. It incorporates predictions from three distinct models: DNN (Deep Neural Networks), LEAR (Lasso Estimated AutoRegressive), and Persistence, alongside the actual electricity prices up until today.") | |
if not selected_variables: | |
st.warning("Please select at least one variable to display.") | |
else: | |
# Plotting | |
st.write("## Scatter Plot: Real Price vs Model Predictions") | |
# Filter based on the selected date range for plotting | |
plot_df = df[(df['Date'] >= pd.Timestamp(min_date_allowed_pred)) & (df['Date'] <= pd.Timestamp(max_date_allowed_pred))] | |
model_column = model_selection | |
if model_selection == 'Persistence': | |
model_column = 'Persis' # Assuming the DataFrame uses 'Persis' as the column name | |
# Create the scatter plot | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=plot_df['Price'], y=plot_df[model_column], mode='markers', name=f"Real Price vs {model_selection} Predictions")) | |
# Calculate the line of best fit | |
m, b = np.polyfit(plot_df['Price'], plot_df[model_column], 1) | |
# Calculate the y-values based on the line of best fit | |
regression_line = m * plot_df['Price'] + b | |
# Format the equation to display as the legend name | |
equation = f"y = {m:.2f}x + {b:.2f}" | |
# Add the line of best fit to the figure with the equation as the legend name | |
fig.add_trace(go.Scatter(x=plot_df['Price'], y=regression_line, mode='lines', name=equation, line=dict(color='black'))) | |
# Update layout with appropriate titles | |
fig.update_layout(xaxis_title="Real Price [EUR/MWh]", yaxis_title=f"{model_selection} Predictions [EUR/MWh]", title=f"Scatter Plot of Real Price vs {model_selection} Predictions") | |
st.plotly_chart(fig, use_container_width=True) | |
# Calculating and displaying metrics | |
if start_date_pred and end_date_pred: | |
st.header("Accuracy Metrics") | |
st.write("Evaluate the forecasting accuracy of our models with key performance indicators. The table summarizes the Mean Absolute Error (MAE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root Mean Square Error (RMSE) for the Persistence, DNN and LEAR models over your selected date range. Lower values indicate higher precision and reliability of the forecasts.") | |
filtered_df = df_filtered[(df_filtered['Date'] >= pd.Timestamp(start_date_pred)) & (df_filtered['Date'] <= pd.Timestamp(end_date_pred))] | |
# Here you would calculate your metrics based on filtered_df | |
# For demonstration, let's assume these are your metrics | |
p_real = filtered_df['Price'] | |
p_pred_dnn = filtered_df['DNN'] | |
p_pred_lear = filtered_df['LEAR'] | |
p_pred_persis = filtered_df['Persis'] | |
# Recalculate the metrics | |
mae_dnn = np.mean(np.abs(p_real - p_pred_dnn)) | |
smape_dnn = 100 * np.mean(np.abs(p_real - p_pred_dnn) / ((np.abs(p_real) + np.abs(p_pred_dnn)) / 2)) | |
rmse_dnn = np.sqrt(np.mean((p_real - p_pred_dnn) ** 2)) | |
mae_lear = np.mean(np.abs(p_real - p_pred_lear)) | |
smape_lear = 100 * np.mean(np.abs(p_real - p_pred_lear) / ((np.abs(p_real) + np.abs(p_pred_lear)) / 2)) | |
rmse_lear = np.sqrt(np.mean((p_real - p_pred_lear) ** 2)) | |
mae_persis = np.mean(np.abs(p_real - p_pred_persis)) | |
smape_persis = 100 * np.mean(np.abs(p_real - p_pred_persis) / ((np.abs(p_real) + np.abs(p_pred_persis)) / 2)) | |
rmse_persis = np.sqrt(np.mean((p_real - p_pred_persis) ** 2)) | |
new_metrics_df = pd.DataFrame({ | |
'Metric': ['MAE', 'SMAPE', 'RMSE'], | |
'Persistence': [f"{mae_persis:.2f}", f"{smape_persis:.2f}%", f"{rmse_persis:.2f}"], | |
'DNN': [f"{mae_dnn:.2f}", f"{smape_dnn:.2f}%", f"{rmse_dnn:.2f}"], | |
'LEAR': [f"{mae_lear:.2f}", f"{smape_lear:.2f}%", f"{rmse_lear:.2f}"] | |
}) | |
st.dataframe(new_metrics_df, hide_index=True) | |
# Download Predictions Button | |
st.write("## Access Predictions") | |
st.write("If you are interested in accessing the predictions made by the models, please contact Margarida Mascarenhas (KU Leuven PhD Student) at margarida.mascarenhas@kuleuven.be") | |