Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers.models import PriorTransformer | |
from diffusers.schedulers import UnCLIPScheduler | |
from diffusers.utils import ( | |
BaseOutput, | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
randn_tensor, | |
replace_example_docstring, | |
) | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline | |
>>> import torch | |
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior") | |
>>> pipe_prior.to("cuda") | |
>>> prompt = "red cat, 4k photo" | |
>>> out = pipe_prior(prompt) | |
>>> image_emb = out.image_embeds | |
>>> negative_image_emb = out.negative_image_embeds | |
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") | |
>>> pipe.to("cuda") | |
>>> image = pipe( | |
... prompt, | |
... image_embeds=image_emb, | |
... negative_image_embeds=negative_image_emb, | |
... height=768, | |
... width=768, | |
... num_inference_steps=100, | |
... ).images | |
>>> image[0].save("cat.png") | |
``` | |
""" | |
EXAMPLE_INTERPOLATE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline | |
>>> from diffusers.utils import load_image | |
>>> import PIL | |
>>> import torch | |
>>> from torchvision import transforms | |
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained( | |
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 | |
... ) | |
>>> pipe_prior.to("cuda") | |
>>> img1 = load_image( | |
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
... "/kandinsky/cat.png" | |
... ) | |
>>> img2 = load_image( | |
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
... "/kandinsky/starry_night.jpeg" | |
... ) | |
>>> images_texts = ["a cat", img1, img2] | |
>>> weights = [0.3, 0.3, 0.4] | |
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights) | |
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) | |
>>> pipe.to("cuda") | |
>>> image = pipe( | |
... "", | |
... image_embeds=image_emb, | |
... negative_image_embeds=zero_image_emb, | |
... height=768, | |
... width=768, | |
... num_inference_steps=150, | |
... ).images[0] | |
>>> image.save("starry_cat.png") | |
``` | |
""" | |
class KandinskyPriorPipelineOutput(BaseOutput): | |
""" | |
Output class for KandinskyPriorPipeline. | |
Args: | |
image_embeds (`torch.FloatTensor`) | |
clip image embeddings for text prompt | |
negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`) | |
clip image embeddings for unconditional tokens | |
""" | |
image_embeds: Union[torch.FloatTensor, np.ndarray] | |
negative_image_embeds: Union[torch.FloatTensor, np.ndarray] | |
class KandinskyPriorPipeline(DiffusionPipeline): | |
""" | |
Pipeline for generating image prior for Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen image-encoder. | |
text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
scheduler ([`UnCLIPScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
""" | |
_exclude_from_cpu_offload = ["prior"] | |
def __init__( | |
self, | |
prior: PriorTransformer, | |
image_encoder: CLIPVisionModelWithProjection, | |
text_encoder: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
scheduler: UnCLIPScheduler, | |
image_processor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
prior=prior, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
image_processor=image_processor, | |
) | |
def interpolate( | |
self, | |
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]], | |
weights: List[float], | |
num_images_per_prompt: int = 1, | |
num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
negative_prior_prompt: Optional[str] = None, | |
negative_prompt: str = "", | |
guidance_scale: float = 4.0, | |
device=None, | |
): | |
""" | |
Function invoked when using the prior pipeline for interpolation. | |
Args: | |
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`): | |
list of prompts and images to guide the image generation. | |
weights: (`List[float]`): | |
list of weights for each condition in `images_and_prompts` | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
negative_prior_prompt (`str`, *optional*): | |
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if | |
`guidance_scale` is less than `1`). | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if | |
`guidance_scale` is less than `1`). | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
Examples: | |
Returns: | |
[`KandinskyPriorPipelineOutput`] or `tuple` | |
""" | |
device = device or self.device | |
if len(images_and_prompts) != len(weights): | |
raise ValueError( | |
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" | |
) | |
image_embeddings = [] | |
for cond, weight in zip(images_and_prompts, weights): | |
if isinstance(cond, str): | |
image_emb = self( | |
cond, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
latents=latents, | |
negative_prompt=negative_prior_prompt, | |
guidance_scale=guidance_scale, | |
).image_embeds | |
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): | |
if isinstance(cond, PIL.Image.Image): | |
cond = ( | |
self.image_processor(cond, return_tensors="pt") | |
.pixel_values[0] | |
.unsqueeze(0) | |
.to(dtype=self.image_encoder.dtype, device=device) | |
) | |
image_emb = self.image_encoder(cond)["image_embeds"] | |
else: | |
raise ValueError( | |
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" | |
) | |
image_embeddings.append(image_emb * weight) | |
image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True) | |
out_zero = self( | |
negative_prompt, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
latents=latents, | |
negative_prompt=negative_prior_prompt, | |
guidance_scale=guidance_scale, | |
) | |
zero_image_emb = ( | |
out_zero.negative_image_embeds | |
if negative_prompt == "" | |
else out_zero.image_embeds | |
) | |
return KandinskyPriorPipelineOutput( | |
image_embeds=image_emb, negative_image_embeds=zero_image_emb | |
) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
if latents.shape != shape: | |
raise ValueError( | |
f"Unexpected latents shape, got {latents.shape}, expected {shape}" | |
) | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def get_zero_embed(self, batch_size=1, device=None): | |
device = device or self.device | |
zero_img = torch.zeros( | |
1, | |
3, | |
self.image_encoder.config.image_size, | |
self.image_encoder.config.image_size, | |
).to(device=device, dtype=self.image_encoder.dtype) | |
zero_image_emb = self.image_encoder(zero_img)["image_embeds"] | |
zero_image_emb = zero_image_emb.repeat(batch_size, 1) | |
return zero_image_emb | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
text_mask = text_inputs.attention_mask.bool().to(device) | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
prompt_embeds = text_encoder_output.text_embeds | |
text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder( | |
uncond_input.input_ids.to(device) | |
) | |
negative_prompt_embeds = ( | |
negative_prompt_embeds_text_encoder_output.text_embeds | |
) | |
uncond_text_encoder_hidden_states = ( | |
negative_prompt_embeds_text_encoder_output.last_hidden_state | |
) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len | |
) | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = ( | |
uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
uncond_text_mask = uncond_text_mask.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
text_encoder_hidden_states = torch.cat( | |
[uncond_text_encoder_hidden_states, text_encoder_hidden_states] | |
) | |
text_mask = torch.cat([uncond_text_mask, text_mask]) | |
return prompt_embeds, text_encoder_hidden_states, text_mask | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError( | |
"`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." | |
) | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.prior]: | |
_, hook = cpu_offload_with_hook( | |
cpu_offloaded_model, device, prev_module_hook=hook | |
) | |
# We'll offload the last model manually. | |
self.prior_hook = hook | |
_, hook = cpu_offload_with_hook( | |
self.image_encoder, device, prev_module_hook=self.prior_hook | |
) | |
self.final_offload_hook = hook | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: int = 1, | |
num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
guidance_scale: float = 4.0, | |
output_type: Optional[str] = "pt", | |
return_dict: bool = True, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
output_type (`str`, *optional*, defaults to `"pt"`): | |
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` | |
(`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Examples: | |
Returns: | |
[`KandinskyPriorPipelineOutput`] or `tuple` | |
""" | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
elif not isinstance(prompt, list): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if isinstance(negative_prompt, str): | |
negative_prompt = [negative_prompt] | |
elif not isinstance(negative_prompt, list) and negative_prompt is not None: | |
raise ValueError( | |
f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}" | |
) | |
# if the negative prompt is defined we double the batch size to | |
# directly retrieve the negative prompt embedding | |
if negative_prompt is not None: | |
prompt = prompt + negative_prompt | |
negative_prompt = 2 * negative_prompt | |
device = self._execution_device | |
batch_size = len(prompt) | |
batch_size = batch_size * num_images_per_prompt | |
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
prompt, device, num_images_per_prompt, False, negative_prompt | |
) | |
hidden_states = randn_tensor( | |
(batch_size, prompt_embeds.shape[-1]), | |
device=prompt_embeds.device, | |
dtype=prompt_embeds.dtype, | |
generator=generator, | |
) | |
latents = self.prior( | |
hidden_states, | |
proj_embedding=prompt_embeds, | |
encoder_hidden_states=text_encoder_hidden_states, | |
attention_mask=text_mask, | |
).predicted_image_embedding | |
image_embeddings = latents | |
# if negative prompt has been defined, we retrieve split the image embedding into two | |
if negative_prompt is None: | |
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) | |
if ( | |
hasattr(self, "final_offload_hook") | |
and self.final_offload_hook is not None | |
): | |
self.final_offload_hook.offload() | |
else: | |
image_embeddings, zero_embeds = image_embeddings.chunk(2) | |
if ( | |
hasattr(self, "final_offload_hook") | |
and self.final_offload_hook is not None | |
): | |
self.prior_hook.offload() | |
if output_type not in ["pt", "np"]: | |
raise ValueError( | |
f"Only the output types `pt` and `np` are supported not output_type={output_type}" | |
) | |
if output_type == "np": | |
image_embeddings = image_embeddings.cpu().numpy() | |
zero_embeds = zero_embeds.cpu().numpy() | |
if not return_dict: | |
return (image_embeddings, zero_embeds) | |
return KandinskyPriorPipelineOutput( | |
image_embeds=image_embeddings, negative_image_embeds=zero_embeds | |
) | |