AK391
all files
7734d5b
import numpy as np
import torchvision
import time
import math
import os
import copy
import pdb
import argparse
import sys
import cv2
import skimage.io
import skimage.transform
import skimage.color
import skimage
import torch
import model
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, models, transforms
from dataloader import CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer, RGB_MEAN, RGB_STD
from scipy.optimize import linear_sum_assignment
from tracker import BYTETracker
def write_results(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids, scores in results:
for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
f.write(line)
def write_results_no_score(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1))
f.write(line)
def run_each_dataset(model_dir, retinanet, dataset_path, subset, cur_dataset):
print(cur_dataset)
img_list = os.listdir(os.path.join(dataset_path, subset, cur_dataset, 'img1'))
img_list = [os.path.join(dataset_path, subset, cur_dataset, 'img1', _) for _ in img_list if ('jpg' in _) or ('png' in _)]
img_list = sorted(img_list)
img_len = len(img_list)
last_feat = None
confidence_threshold = 0.6
IOU_threshold = 0.5
retention_threshold = 10
det_list_all = []
tracklet_all = []
results = []
max_id = 0
max_draw_len = 100
draw_interval = 5
img_width = 1920
img_height = 1080
fps = 30
tracker = BYTETracker()
for idx in range((int(img_len / 2)), img_len + 1):
i = idx - 1
print('tracking: ', i)
with torch.no_grad():
data_path1 = img_list[min(idx, img_len - 1)]
img_origin1 = skimage.io.imread(data_path1)
img_h, img_w, _ = img_origin1.shape
img_height, img_width = img_h, img_w
resize_h, resize_w = math.ceil(img_h / 32) * 32, math.ceil(img_w / 32) * 32
img1 = np.zeros((resize_h, resize_w, 3), dtype=img_origin1.dtype)
img1[:img_h, :img_w, :] = img_origin1
img1 = (img1.astype(np.float32) / 255.0 - np.array([[RGB_MEAN]])) / np.array([[RGB_STD]])
img1 = torch.from_numpy(img1).permute(2, 0, 1).view(1, 3, resize_h, resize_w)
scores, transformed_anchors, last_feat = retinanet(img1.cuda().float(), last_feat=last_feat)
if idx > (int(img_len / 2)):
idxs = np.where(scores > 0.1)
# run tracking
online_targets = tracker.update(transformed_anchors[idxs[0], :4], scores[idxs[0]])
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
results.append((idx, online_tlwhs, online_ids, online_scores))
fout_tracking = os.path.join(model_dir, 'results', cur_dataset + '.txt')
write_results(fout_tracking, results)
def main(args=None):
parser = argparse.ArgumentParser(description='Simple script for testing a CTracker network.')
parser.add_argument('--dataset_path', default='/dockerdata/home/jeromepeng/data/MOT/MOT17/', type=str,
help='Dataset path, location of the images sequence.')
parser.add_argument('--model_dir', default='./trained_model/', help='Path to model (.pt) file.')
parser.add_argument('--model_path', default='./trained_model/model_final.pth', help='Path to model (.pt) file.')
parser.add_argument('--seq_nums', default=0, type=int)
parser = parser.parse_args(args)
if not os.path.exists(os.path.join(parser.model_dir, 'results')):
os.makedirs(os.path.join(parser.model_dir, 'results'))
retinanet = model.resnet50(num_classes=1, pretrained=True)
# retinanet_save = torch.load(os.path.join(parser.model_dir, 'model_final.pth'))
retinanet_save = torch.load(os.path.join(parser.model_path))
# rename moco pre-trained keys
state_dict = retinanet_save.state_dict()
for k in list(state_dict.keys()):
# retain only encoder up to before the embedding layer
if k.startswith('module.'):
# remove prefix
state_dict[k[len("module."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
retinanet.load_state_dict(state_dict)
use_gpu = True
if use_gpu: retinanet = retinanet.cuda()
retinanet.eval()
seq_nums = []
if parser.seq_nums > 0:
seq_nums.append(parser.seq_nums)
else:
seq_nums = [2, 4, 5, 9, 10, 11, 13]
for seq_num in seq_nums:
run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'train', 'MOT17-{:02d}'.format(seq_num))
# for seq_num in [1, 3, 6, 7, 8, 12, 14]:
# run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'test', 'MOT17-{:02d}'.format(seq_num))
if __name__ == '__main__':
main()