bytetrack / onnx_inference.py
Ahsen Khaliq
Update onnx_inference.py
9970a74
import argparse
import os
import cv2
import numpy as np
from loguru import logger
import onnxruntime
from yolox.data.data_augment import preproc as preprocess
from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis
from yolox.utils.visualize import plot_tracking
from yolox.tracker.byte_tracker import BYTETracker
from yolox.tracking_utils.timer import Timer
def make_parser():
parser = argparse.ArgumentParser("onnxruntime inference sample")
parser.add_argument(
"-m",
"--model",
type=str,
default="bytetrack_s.onnx",
help="Input your onnx model.",
)
parser.add_argument(
"-i",
"--video_path",
type=str,
default='../../videos/palace.mp4',
help="Path to your input image.",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
default='.',
help="Path to your output directory.",
)
parser.add_argument(
"-s",
"--score_thr",
type=float,
default=0.1,
help="Score threshould to filter the result.",
)
parser.add_argument(
"-n",
"--nms_thr",
type=float,
default=0.7,
help="NMS threshould.",
)
parser.add_argument(
"--input_shape",
type=str,
default="608,1088",
help="Specify an input shape for inference.",
)
parser.add_argument(
"--with_p6",
action="store_true",
help="Whether your model uses p6 in FPN/PAN.",
)
# tracking args
parser.add_argument("--track_thresh", type=float, default=0.5, help="tracking confidence threshold")
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
parser.add_argument("--match_thresh", type=int, default=0.8, help="matching threshold for tracking")
parser.add_argument('--min-box-area', type=float, default=10, help='filter out tiny boxes')
parser.add_argument("--mot20", dest="mot20", default=False, action="store_true", help="test mot20.")
return parser
class Predictor(object):
def __init__(self, args):
self.rgb_means = (0.485, 0.456, 0.406)
self.std = (0.229, 0.224, 0.225)
self.args = args
self.session = onnxruntime.InferenceSession(args.model)
self.input_shape = tuple(map(int, args.input_shape.split(',')))
def inference(self, ori_img, timer):
img_info = {"id": 0}
height, width = ori_img.shape[:2]
img_info["height"] = height
img_info["width"] = width
img_info["raw_img"] = ori_img
img, ratio = preprocess(ori_img, self.input_shape, self.rgb_means, self.std)
img_info["ratio"] = ratio
ort_inputs = {self.session.get_inputs()[0].name: img[None, :, :, :]}
timer.tic()
output = self.session.run(None, ort_inputs)
predictions = demo_postprocess(output[0], self.input_shape, p6=self.args.with_p6)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=self.args.nms_thr, score_thr=self.args.score_thr)
return dets[:, :-1], img_info
def imageflow_demo(predictor, args):
cap = cv2.VideoCapture(args.video_path)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float
fps = cap.get(cv2.CAP_PROP_FPS)
save_folder = args.output_dir
os.makedirs(save_folder, exist_ok=True)
save_path = os.path.join(save_folder, args.video_path.split("/")[-1])
logger.info(f"video save_path is {save_path}")
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height))
)
tracker = BYTETracker(args, frame_rate=30)
timer = Timer()
frame_id = 0
results = []
while True:
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
ret_val, frame = cap.read()
if ret_val:
outputs, img_info = predictor.inference(frame, timer)
online_targets = tracker.update(outputs, [img_info['height'], img_info['width']], [img_info['height'], img_info['width']])
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
timer.toc()
results.append((frame_id + 1, online_tlwhs, online_ids, online_scores))
online_im = plot_tracking(img_info['raw_img'], online_tlwhs, online_ids, frame_id=frame_id + 1,
fps=1. / timer.average_time)
vid_writer.write(online_im)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord("q") or ch == ord("Q"):
break
else:
break
frame_id += 1
if __name__ == '__main__':
args = make_parser().parse_args()
predictor = Predictor(args)
imageflow_demo(predictor, args)