bytetrack / deploy /ncnn /cpp /src /kalmanFilter.cpp
AK391
all files
7734d5b
#include "kalmanFilter.h"
#include <Eigen/Cholesky>
namespace byte_kalman
{
const double KalmanFilter::chi2inv95[10] = {
0,
3.8415,
5.9915,
7.8147,
9.4877,
11.070,
12.592,
14.067,
15.507,
16.919
};
KalmanFilter::KalmanFilter()
{
int ndim = 4;
double dt = 1.;
_motion_mat = Eigen::MatrixXf::Identity(8, 8);
for (int i = 0; i < ndim; i++) {
_motion_mat(i, ndim + i) = dt;
}
_update_mat = Eigen::MatrixXf::Identity(4, 8);
this->_std_weight_position = 1. / 20;
this->_std_weight_velocity = 1. / 160;
}
KAL_DATA KalmanFilter::initiate(const DETECTBOX &measurement)
{
DETECTBOX mean_pos = measurement;
DETECTBOX mean_vel;
for (int i = 0; i < 4; i++) mean_vel(i) = 0;
KAL_MEAN mean;
for (int i = 0; i < 8; i++) {
if (i < 4) mean(i) = mean_pos(i);
else mean(i) = mean_vel(i - 4);
}
KAL_MEAN std;
std(0) = 2 * _std_weight_position * measurement[3];
std(1) = 2 * _std_weight_position * measurement[3];
std(2) = 1e-2;
std(3) = 2 * _std_weight_position * measurement[3];
std(4) = 10 * _std_weight_velocity * measurement[3];
std(5) = 10 * _std_weight_velocity * measurement[3];
std(6) = 1e-5;
std(7) = 10 * _std_weight_velocity * measurement[3];
KAL_MEAN tmp = std.array().square();
KAL_COVA var = tmp.asDiagonal();
return std::make_pair(mean, var);
}
void KalmanFilter::predict(KAL_MEAN &mean, KAL_COVA &covariance)
{
//revise the data;
DETECTBOX std_pos;
std_pos << _std_weight_position * mean(3),
_std_weight_position * mean(3),
1e-2,
_std_weight_position * mean(3);
DETECTBOX std_vel;
std_vel << _std_weight_velocity * mean(3),
_std_weight_velocity * mean(3),
1e-5,
_std_weight_velocity * mean(3);
KAL_MEAN tmp;
tmp.block<1, 4>(0, 0) = std_pos;
tmp.block<1, 4>(0, 4) = std_vel;
tmp = tmp.array().square();
KAL_COVA motion_cov = tmp.asDiagonal();
KAL_MEAN mean1 = this->_motion_mat * mean.transpose();
KAL_COVA covariance1 = this->_motion_mat * covariance *(_motion_mat.transpose());
covariance1 += motion_cov;
mean = mean1;
covariance = covariance1;
}
KAL_HDATA KalmanFilter::project(const KAL_MEAN &mean, const KAL_COVA &covariance)
{
DETECTBOX std;
std << _std_weight_position * mean(3), _std_weight_position * mean(3),
1e-1, _std_weight_position * mean(3);
KAL_HMEAN mean1 = _update_mat * mean.transpose();
KAL_HCOVA covariance1 = _update_mat * covariance * (_update_mat.transpose());
Eigen::Matrix<float, 4, 4> diag = std.asDiagonal();
diag = diag.array().square().matrix();
covariance1 += diag;
// covariance1.diagonal() << diag;
return std::make_pair(mean1, covariance1);
}
KAL_DATA
KalmanFilter::update(
const KAL_MEAN &mean,
const KAL_COVA &covariance,
const DETECTBOX &measurement)
{
KAL_HDATA pa = project(mean, covariance);
KAL_HMEAN projected_mean = pa.first;
KAL_HCOVA projected_cov = pa.second;
//chol_factor, lower =
//scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
//kalmain_gain =
//scipy.linalg.cho_solve((cho_factor, lower),
//np.dot(covariance, self._upadte_mat.T).T,
//check_finite=False).T
Eigen::Matrix<float, 4, 8> B = (covariance * (_update_mat.transpose())).transpose();
Eigen::Matrix<float, 8, 4> kalman_gain = (projected_cov.llt().solve(B)).transpose(); // eg.8x4
Eigen::Matrix<float, 1, 4> innovation = measurement - projected_mean; //eg.1x4
auto tmp = innovation * (kalman_gain.transpose());
KAL_MEAN new_mean = (mean.array() + tmp.array()).matrix();
KAL_COVA new_covariance = covariance - kalman_gain * projected_cov*(kalman_gain.transpose());
return std::make_pair(new_mean, new_covariance);
}
Eigen::Matrix<float, 1, -1>
KalmanFilter::gating_distance(
const KAL_MEAN &mean,
const KAL_COVA &covariance,
const std::vector<DETECTBOX> &measurements,
bool only_position)
{
KAL_HDATA pa = this->project(mean, covariance);
if (only_position) {
printf("not implement!");
exit(0);
}
KAL_HMEAN mean1 = pa.first;
KAL_HCOVA covariance1 = pa.second;
// Eigen::Matrix<float, -1, 4, Eigen::RowMajor> d(size, 4);
DETECTBOXSS d(measurements.size(), 4);
int pos = 0;
for (DETECTBOX box : measurements) {
d.row(pos++) = box - mean1;
}
Eigen::Matrix<float, -1, -1, Eigen::RowMajor> factor = covariance1.llt().matrixL();
Eigen::Matrix<float, -1, -1> z = factor.triangularView<Eigen::Lower>().solve<Eigen::OnTheRight>(d).transpose();
auto zz = ((z.array())*(z.array())).matrix();
auto square_maha = zz.colwise().sum();
return square_maha;
}
}