Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |
import torch | |
import torch.nn as nn | |
class SiLU(nn.Module): | |
"""export-friendly version of nn.SiLU()""" | |
def forward(x): | |
return x * torch.sigmoid(x) | |
def get_activation(name="silu", inplace=True): | |
if name == "silu": | |
module = nn.SiLU(inplace=inplace) | |
elif name == "relu": | |
module = nn.ReLU(inplace=inplace) | |
elif name == "lrelu": | |
module = nn.LeakyReLU(0.1, inplace=inplace) | |
else: | |
raise AttributeError("Unsupported act type: {}".format(name)) | |
return module | |
class BaseConv(nn.Module): | |
"""A Conv2d -> Batchnorm -> silu/leaky relu block""" | |
def __init__( | |
self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu" | |
): | |
super().__init__() | |
# same padding | |
pad = (ksize - 1) // 2 | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=ksize, | |
stride=stride, | |
padding=pad, | |
groups=groups, | |
bias=bias, | |
) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.act = get_activation(act, inplace=True) | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def fuseforward(self, x): | |
return self.act(self.conv(x)) | |
class DWConv(nn.Module): | |
"""Depthwise Conv + Conv""" | |
def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"): | |
super().__init__() | |
self.dconv = BaseConv( | |
in_channels, | |
in_channels, | |
ksize=ksize, | |
stride=stride, | |
groups=in_channels, | |
act=act, | |
) | |
self.pconv = BaseConv( | |
in_channels, out_channels, ksize=1, stride=1, groups=1, act=act | |
) | |
def forward(self, x): | |
x = self.dconv(x) | |
return self.pconv(x) | |
class Bottleneck(nn.Module): | |
# Standard bottleneck | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
shortcut=True, | |
expansion=0.5, | |
depthwise=False, | |
act="silu", | |
): | |
super().__init__() | |
hidden_channels = int(out_channels * expansion) | |
Conv = DWConv if depthwise else BaseConv | |
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) | |
self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act) | |
self.use_add = shortcut and in_channels == out_channels | |
def forward(self, x): | |
y = self.conv2(self.conv1(x)) | |
if self.use_add: | |
y = y + x | |
return y | |
class ResLayer(nn.Module): | |
"Residual layer with `in_channels` inputs." | |
def __init__(self, in_channels: int): | |
super().__init__() | |
mid_channels = in_channels // 2 | |
self.layer1 = BaseConv( | |
in_channels, mid_channels, ksize=1, stride=1, act="lrelu" | |
) | |
self.layer2 = BaseConv( | |
mid_channels, in_channels, ksize=3, stride=1, act="lrelu" | |
) | |
def forward(self, x): | |
out = self.layer2(self.layer1(x)) | |
return x + out | |
class SPPBottleneck(nn.Module): | |
"""Spatial pyramid pooling layer used in YOLOv3-SPP""" | |
def __init__( | |
self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu" | |
): | |
super().__init__() | |
hidden_channels = in_channels // 2 | |
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation) | |
self.m = nn.ModuleList( | |
[ | |
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) | |
for ks in kernel_sizes | |
] | |
) | |
conv2_channels = hidden_channels * (len(kernel_sizes) + 1) | |
self.conv2 = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = torch.cat([x] + [m(x) for m in self.m], dim=1) | |
x = self.conv2(x) | |
return x | |
class CSPLayer(nn.Module): | |
"""C3 in yolov5, CSP Bottleneck with 3 convolutions""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
n=1, | |
shortcut=True, | |
expansion=0.5, | |
depthwise=False, | |
act="silu", | |
): | |
""" | |
Args: | |
in_channels (int): input channels. | |
out_channels (int): output channels. | |
n (int): number of Bottlenecks. Default value: 1. | |
""" | |
# ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
hidden_channels = int(out_channels * expansion) # hidden channels | |
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) | |
self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) | |
self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act) | |
module_list = [ | |
Bottleneck( | |
hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act | |
) | |
for _ in range(n) | |
] | |
self.m = nn.Sequential(*module_list) | |
def forward(self, x): | |
x_1 = self.conv1(x) | |
x_2 = self.conv2(x) | |
x_1 = self.m(x_1) | |
x = torch.cat((x_1, x_2), dim=1) | |
return self.conv3(x) | |
class Focus(nn.Module): | |
"""Focus width and height information into channel space.""" | |
def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"): | |
super().__init__() | |
self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act) | |
def forward(self, x): | |
# shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) | |
patch_top_left = x[..., ::2, ::2] | |
patch_top_right = x[..., ::2, 1::2] | |
patch_bot_left = x[..., 1::2, ::2] | |
patch_bot_right = x[..., 1::2, 1::2] | |
x = torch.cat( | |
( | |
patch_top_left, | |
patch_bot_left, | |
patch_top_right, | |
patch_bot_right, | |
), | |
dim=1, | |
) | |
return self.conv(x) | |