Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |
from torch import nn | |
from .network_blocks import BaseConv, CSPLayer, DWConv, Focus, ResLayer, SPPBottleneck | |
class Darknet(nn.Module): | |
# number of blocks from dark2 to dark5. | |
depth2blocks = {21: [1, 2, 2, 1], 53: [2, 8, 8, 4]} | |
def __init__( | |
self, | |
depth, | |
in_channels=3, | |
stem_out_channels=32, | |
out_features=("dark3", "dark4", "dark5"), | |
): | |
""" | |
Args: | |
depth (int): depth of darknet used in model, usually use [21, 53] for this param. | |
in_channels (int): number of input channels, for example, use 3 for RGB image. | |
stem_out_channels (int): number of output chanels of darknet stem. | |
It decides channels of darknet layer2 to layer5. | |
out_features (Tuple[str]): desired output layer name. | |
""" | |
super().__init__() | |
assert out_features, "please provide output features of Darknet" | |
self.out_features = out_features | |
self.stem = nn.Sequential( | |
BaseConv(in_channels, stem_out_channels, ksize=3, stride=1, act="lrelu"), | |
*self.make_group_layer(stem_out_channels, num_blocks=1, stride=2), | |
) | |
in_channels = stem_out_channels * 2 # 64 | |
num_blocks = Darknet.depth2blocks[depth] | |
# create darknet with `stem_out_channels` and `num_blocks` layers. | |
# to make model structure more clear, we don't use `for` statement in python. | |
self.dark2 = nn.Sequential( | |
*self.make_group_layer(in_channels, num_blocks[0], stride=2) | |
) | |
in_channels *= 2 # 128 | |
self.dark3 = nn.Sequential( | |
*self.make_group_layer(in_channels, num_blocks[1], stride=2) | |
) | |
in_channels *= 2 # 256 | |
self.dark4 = nn.Sequential( | |
*self.make_group_layer(in_channels, num_blocks[2], stride=2) | |
) | |
in_channels *= 2 # 512 | |
self.dark5 = nn.Sequential( | |
*self.make_group_layer(in_channels, num_blocks[3], stride=2), | |
*self.make_spp_block([in_channels, in_channels * 2], in_channels * 2), | |
) | |
def make_group_layer(self, in_channels: int, num_blocks: int, stride: int = 1): | |
"starts with conv layer then has `num_blocks` `ResLayer`" | |
return [ | |
BaseConv(in_channels, in_channels * 2, ksize=3, stride=stride, act="lrelu"), | |
*[(ResLayer(in_channels * 2)) for _ in range(num_blocks)], | |
] | |
def make_spp_block(self, filters_list, in_filters): | |
m = nn.Sequential( | |
*[ | |
BaseConv(in_filters, filters_list[0], 1, stride=1, act="lrelu"), | |
BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"), | |
SPPBottleneck( | |
in_channels=filters_list[1], | |
out_channels=filters_list[0], | |
activation="lrelu", | |
), | |
BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"), | |
BaseConv(filters_list[1], filters_list[0], 1, stride=1, act="lrelu"), | |
] | |
) | |
return m | |
def forward(self, x): | |
outputs = {} | |
x = self.stem(x) | |
outputs["stem"] = x | |
x = self.dark2(x) | |
outputs["dark2"] = x | |
x = self.dark3(x) | |
outputs["dark3"] = x | |
x = self.dark4(x) | |
outputs["dark4"] = x | |
x = self.dark5(x) | |
outputs["dark5"] = x | |
return {k: v for k, v in outputs.items() if k in self.out_features} | |
class CSPDarknet(nn.Module): | |
def __init__( | |
self, | |
dep_mul, | |
wid_mul, | |
out_features=("dark3", "dark4", "dark5"), | |
depthwise=False, | |
act="silu", | |
): | |
super().__init__() | |
assert out_features, "please provide output features of Darknet" | |
self.out_features = out_features | |
Conv = DWConv if depthwise else BaseConv | |
base_channels = int(wid_mul * 64) # 64 | |
base_depth = max(round(dep_mul * 3), 1) # 3 | |
# stem | |
self.stem = Focus(3, base_channels, ksize=3, act=act) | |
# dark2 | |
self.dark2 = nn.Sequential( | |
Conv(base_channels, base_channels * 2, 3, 2, act=act), | |
CSPLayer( | |
base_channels * 2, | |
base_channels * 2, | |
n=base_depth, | |
depthwise=depthwise, | |
act=act, | |
), | |
) | |
# dark3 | |
self.dark3 = nn.Sequential( | |
Conv(base_channels * 2, base_channels * 4, 3, 2, act=act), | |
CSPLayer( | |
base_channels * 4, | |
base_channels * 4, | |
n=base_depth * 3, | |
depthwise=depthwise, | |
act=act, | |
), | |
) | |
# dark4 | |
self.dark4 = nn.Sequential( | |
Conv(base_channels * 4, base_channels * 8, 3, 2, act=act), | |
CSPLayer( | |
base_channels * 8, | |
base_channels * 8, | |
n=base_depth * 3, | |
depthwise=depthwise, | |
act=act, | |
), | |
) | |
# dark5 | |
self.dark5 = nn.Sequential( | |
Conv(base_channels * 8, base_channels * 16, 3, 2, act=act), | |
SPPBottleneck(base_channels * 16, base_channels * 16, activation=act), | |
CSPLayer( | |
base_channels * 16, | |
base_channels * 16, | |
n=base_depth, | |
shortcut=False, | |
depthwise=depthwise, | |
act=act, | |
), | |
) | |
def forward(self, x): | |
outputs = {} | |
x = self.stem(x) | |
outputs["stem"] = x | |
x = self.dark2(x) | |
outputs["dark2"] = x | |
x = self.dark3(x) | |
outputs["dark3"] = x | |
x = self.dark4(x) | |
outputs["dark4"] = x | |
x = self.dark5(x) | |
outputs["dark5"] = x | |
return {k: v for k, v in outputs.items() if k in self.out_features} | |