Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii, Inc. and its affiliates. | |
from loguru import logger | |
from tqdm import tqdm | |
import torch | |
from yolox.utils import ( | |
gather, | |
is_main_process, | |
postprocess, | |
synchronize, | |
time_synchronized, | |
xyxy2xywh | |
) | |
import contextlib | |
import io | |
import itertools | |
import json | |
import tempfile | |
import time | |
class COCOEvaluator: | |
""" | |
COCO AP Evaluation class. All the data in the val2017 dataset are processed | |
and evaluated by COCO API. | |
""" | |
def __init__( | |
self, dataloader, img_size, confthre, nmsthre, num_classes, testdev=False | |
): | |
""" | |
Args: | |
dataloader (Dataloader): evaluate dataloader. | |
img_size (int): image size after preprocess. images are resized | |
to squares whose shape is (img_size, img_size). | |
confthre (float): confidence threshold ranging from 0 to 1, which | |
is defined in the config file. | |
nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1. | |
""" | |
self.dataloader = dataloader | |
self.img_size = img_size | |
self.confthre = confthre | |
self.nmsthre = nmsthre | |
self.num_classes = num_classes | |
self.testdev = testdev | |
def evaluate( | |
self, | |
model, | |
distributed=False, | |
half=False, | |
trt_file=None, | |
decoder=None, | |
test_size=None, | |
): | |
""" | |
COCO average precision (AP) Evaluation. Iterate inference on the test dataset | |
and the results are evaluated by COCO API. | |
NOTE: This function will change training mode to False, please save states if needed. | |
Args: | |
model : model to evaluate. | |
Returns: | |
ap50_95 (float) : COCO AP of IoU=50:95 | |
ap50 (float) : COCO AP of IoU=50 | |
summary (sr): summary info of evaluation. | |
""" | |
# TODO half to amp_test | |
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor | |
model = model.eval() | |
if half: | |
model = model.half() | |
ids = [] | |
data_list = [] | |
progress_bar = tqdm if is_main_process() else iter | |
inference_time = 0 | |
nms_time = 0 | |
n_samples = len(self.dataloader) - 1 | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() | |
model(x) | |
model = model_trt | |
for cur_iter, (imgs, _, info_imgs, ids) in enumerate( | |
progress_bar(self.dataloader) | |
): | |
with torch.no_grad(): | |
imgs = imgs.type(tensor_type) | |
# skip the the last iters since batchsize might be not enough for batch inference | |
is_time_record = cur_iter < len(self.dataloader) - 1 | |
if is_time_record: | |
start = time.time() | |
outputs = model(imgs) | |
if decoder is not None: | |
outputs = decoder(outputs, dtype=outputs.type()) | |
if is_time_record: | |
infer_end = time_synchronized() | |
inference_time += infer_end - start | |
outputs = postprocess( | |
outputs, self.num_classes, self.confthre, self.nmsthre | |
) | |
if is_time_record: | |
nms_end = time_synchronized() | |
nms_time += nms_end - infer_end | |
data_list.extend(self.convert_to_coco_format(outputs, info_imgs, ids)) | |
statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples]) | |
if distributed: | |
data_list = gather(data_list, dst=0) | |
data_list = list(itertools.chain(*data_list)) | |
torch.distributed.reduce(statistics, dst=0) | |
eval_results = self.evaluate_prediction(data_list, statistics) | |
synchronize() | |
return eval_results | |
def convert_to_coco_format(self, outputs, info_imgs, ids): | |
data_list = [] | |
for (output, img_h, img_w, img_id) in zip( | |
outputs, info_imgs[0], info_imgs[1], ids | |
): | |
if output is None: | |
continue | |
output = output.cpu() | |
bboxes = output[:, 0:4] | |
# preprocessing: resize | |
scale = min( | |
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) | |
) | |
bboxes /= scale | |
bboxes = xyxy2xywh(bboxes) | |
cls = output[:, 6] | |
scores = output[:, 4] * output[:, 5] | |
for ind in range(bboxes.shape[0]): | |
label = self.dataloader.dataset.class_ids[int(cls[ind])] | |
pred_data = { | |
"image_id": int(img_id), | |
"category_id": label, | |
"bbox": bboxes[ind].numpy().tolist(), | |
"score": scores[ind].numpy().item(), | |
"segmentation": [], | |
} # COCO json format | |
data_list.append(pred_data) | |
return data_list | |
def evaluate_prediction(self, data_dict, statistics): | |
if not is_main_process(): | |
return 0, 0, None | |
logger.info("Evaluate in main process...") | |
annType = ["segm", "bbox", "keypoints"] | |
inference_time = statistics[0].item() | |
nms_time = statistics[1].item() | |
n_samples = statistics[2].item() | |
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) | |
a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size) | |
time_info = ", ".join( | |
[ | |
"Average {} time: {:.2f} ms".format(k, v) | |
for k, v in zip( | |
["forward", "NMS", "inference"], | |
[a_infer_time, a_nms_time, (a_infer_time + a_nms_time)], | |
) | |
] | |
) | |
info = time_info + "\n" | |
# Evaluate the Dt (detection) json comparing with the ground truth | |
if len(data_dict) > 0: | |
cocoGt = self.dataloader.dataset.coco | |
# TODO: since pycocotools can't process dict in py36, write data to json file. | |
if self.testdev: | |
json.dump(data_dict, open("./yolox_testdev_2017.json", "w")) | |
cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json") | |
else: | |
_, tmp = tempfile.mkstemp() | |
json.dump(data_dict, open(tmp, "w")) | |
cocoDt = cocoGt.loadRes(tmp) | |
''' | |
try: | |
from yolox.layers import COCOeval_opt as COCOeval | |
except ImportError: | |
from pycocotools import cocoeval as COCOeval | |
logger.warning("Use standard COCOeval.") | |
''' | |
#from pycocotools.cocoeval import COCOeval | |
from yolox.layers import COCOeval_opt as COCOeval | |
cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) | |
cocoEval.evaluate() | |
cocoEval.accumulate() | |
redirect_string = io.StringIO() | |
with contextlib.redirect_stdout(redirect_string): | |
cocoEval.summarize() | |
info += redirect_string.getvalue() | |
return cocoEval.stats[0], cocoEval.stats[1], info | |
else: | |
return 0, 0, info | |