Spaces:
Runtime error
Runtime error
from collections import deque | |
import torch | |
import numpy as np | |
from utils.kalman_filter import KalmanFilter | |
from utils.log import logger | |
from models import * | |
from tracker import matching | |
from .basetrack import BaseTrack, TrackState | |
class STrack(BaseTrack): | |
def __init__(self, tlwh, score): | |
# wait activate | |
self._tlwh = np.asarray(tlwh, dtype=np.float) | |
self.kalman_filter = None | |
self.mean, self.covariance = None, None | |
self.is_activated = False | |
self.score = score | |
self.tracklet_len = 0 | |
def predict(self): | |
mean_state = self.mean.copy() | |
if self.state != TrackState.Tracked: | |
mean_state[7] = 0 | |
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
def multi_predict(stracks, kalman_filter): | |
if len(stracks) > 0: | |
multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
multi_covariance = np.asarray([st.covariance for st in stracks]) | |
for i, st in enumerate(stracks): | |
if st.state != TrackState.Tracked: | |
multi_mean[i][7] = 0 | |
# multi_mean, multi_covariance = STrack.kalman_filter.multi_predict(multi_mean, multi_covariance) | |
multi_mean, multi_covariance = kalman_filter.multi_predict(multi_mean, multi_covariance) | |
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
stracks[i].mean = mean | |
stracks[i].covariance = cov | |
def activate(self, kalman_filter, frame_id): | |
"""Start a new tracklet""" | |
self.kalman_filter = kalman_filter | |
self.track_id = self.next_id() | |
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh)) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
#self.is_activated = True | |
self.frame_id = frame_id | |
self.start_frame = frame_id | |
def re_activate(self, new_track, frame_id, new_id=False): | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh) | |
) | |
self.tracklet_len = 0 | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.frame_id = frame_id | |
if new_id: | |
self.track_id = self.next_id() | |
def update(self, new_track, frame_id, update_feature=True): | |
""" | |
Update a matched track | |
:type new_track: STrack | |
:type frame_id: int | |
:type update_feature: bool | |
:return: | |
""" | |
self.frame_id = frame_id | |
self.tracklet_len += 1 | |
new_tlwh = new_track.tlwh | |
self.mean, self.covariance = self.kalman_filter.update( | |
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) | |
self.state = TrackState.Tracked | |
self.is_activated = True | |
self.score = new_track.score | |
def tlwh(self): | |
"""Get current position in bounding box format `(top left x, top left y, | |
width, height)`. | |
""" | |
if self.mean is None: | |
return self._tlwh.copy() | |
ret = self.mean[:4].copy() | |
ret[2] *= ret[3] | |
ret[:2] -= ret[2:] / 2 | |
return ret | |
def tlbr(self): | |
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., | |
`(top left, bottom right)`. | |
""" | |
ret = self.tlwh.copy() | |
ret[2:] += ret[:2] | |
return ret | |
def tlwh_to_xyah(tlwh): | |
"""Convert bounding box to format `(center x, center y, aspect ratio, | |
height)`, where the aspect ratio is `width / height`. | |
""" | |
ret = np.asarray(tlwh).copy() | |
ret[:2] += ret[2:] / 2 | |
ret[2] /= ret[3] | |
return ret | |
def to_xyah(self): | |
return self.tlwh_to_xyah(self.tlwh) | |
def tlbr_to_tlwh(tlbr): | |
ret = np.asarray(tlbr).copy() | |
ret[2:] -= ret[:2] | |
return ret | |
def tlwh_to_tlbr(tlwh): | |
ret = np.asarray(tlwh).copy() | |
ret[2:] += ret[:2] | |
return ret | |
def __repr__(self): | |
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame) | |
class BYTETracker(object): | |
def __init__(self, opt, frame_rate=30): | |
self.opt = opt | |
self.model = Darknet(opt.cfg, nID=14455) | |
# load_darknet_weights(self.model, opt.weights) | |
self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'], strict=False) | |
self.model.cuda().eval() | |
self.tracked_stracks = [] # type: list[STrack] | |
self.lost_stracks = [] # type: list[STrack] | |
self.removed_stracks = [] # type: list[STrack] | |
self.frame_id = 0 | |
self.det_thresh = opt.conf_thres | |
self.init_thresh = self.det_thresh + 0.2 | |
self.low_thresh = 0.3 | |
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer) | |
self.max_time_lost = self.buffer_size | |
self.kalman_filter = KalmanFilter() | |
def update(self, im_blob, img0): | |
""" | |
Processes the image frame and finds bounding box(detections). | |
Associates the detection with corresponding tracklets and also handles lost, removed, refound and active tracklets | |
Parameters | |
---------- | |
im_blob : torch.float32 | |
Tensor of shape depending upon the size of image. By default, shape of this tensor is [1, 3, 608, 1088] | |
img0 : ndarray | |
ndarray of shape depending on the input image sequence. By default, shape is [608, 1080, 3] | |
Returns | |
------- | |
output_stracks : list of Strack(instances) | |
The list contains information regarding the online_tracklets for the recieved image tensor. | |
""" | |
self.frame_id += 1 | |
activated_starcks = [] # for storing active tracks, for the current frame | |
refind_stracks = [] # Lost Tracks whose detections are obtained in the current frame | |
lost_stracks = [] # The tracks which are not obtained in the current frame but are not removed.(Lost for some time lesser than the threshold for removing) | |
removed_stracks = [] | |
t1 = time.time() | |
''' Step 1: Network forward, get detections & embeddings''' | |
with torch.no_grad(): | |
pred = self.model(im_blob) | |
# pred is tensor of all the proposals (default number of proposals: 54264). Proposals have information associated with the bounding box and embeddings | |
pred = pred[pred[:, :, 4] > self.low_thresh] | |
# pred now has lesser number of proposals. Proposals rejected on basis of object confidence score | |
if len(pred) > 0: | |
dets = non_max_suppression(pred.unsqueeze(0), self.low_thresh, self.opt.nms_thres)[0].cpu() | |
# Final proposals are obtained in dets. Information of bounding box and embeddings also included | |
# Next step changes the detection scales | |
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round() | |
'''Detections is list of (x1, y1, x2, y2, object_conf, class_score, class_pred)''' | |
# class_pred is the embeddings. | |
dets = dets.numpy() | |
remain_inds = dets[:, 4] > self.det_thresh | |
inds_low = dets[:, 4] > self.low_thresh | |
inds_high = dets[:, 4] < self.det_thresh | |
inds_second = np.logical_and(inds_low, inds_high) | |
dets_second = dets[inds_second] | |
dets = dets[remain_inds] | |
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4]) for | |
tlbrs in dets[:, :5]] | |
else: | |
detections = [] | |
dets_second = [] | |
t2 = time.time() | |
# print('Forward: {} s'.format(t2-t1)) | |
''' Add newly detected tracklets to tracked_stracks''' | |
unconfirmed = [] | |
tracked_stracks = [] # type: list[STrack] | |
for track in self.tracked_stracks: | |
if not track.is_activated: | |
# previous tracks which are not active in the current frame are added in unconfirmed list | |
unconfirmed.append(track) | |
# print("Should not be here, in unconfirmed") | |
else: | |
# Active tracks are added to the local list 'tracked_stracks' | |
tracked_stracks.append(track) | |
''' Step 2: First association, with embedding''' | |
# Combining currently tracked_stracks and lost_stracks | |
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks) | |
# Predict the current location with KF | |
STrack.multi_predict(strack_pool, self.kalman_filter) | |
dists = matching.iou_distance(strack_pool, detections) | |
# The dists is the list of distances of the detection with the tracks in strack_pool | |
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.8) | |
# The matches is the array for corresponding matches of the detection with the corresponding strack_pool | |
for itracked, idet in matches: | |
# itracked is the id of the track and idet is the detection | |
track = strack_pool[itracked] | |
det = detections[idet] | |
if track.state == TrackState.Tracked: | |
# If the track is active, add the detection to the track | |
track.update(detections[idet], self.frame_id) | |
activated_starcks.append(track) | |
else: | |
# We have obtained a detection from a track which is not active, hence put the track in refind_stracks list | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
# association the untrack to the low score detections | |
if len(dets_second) > 0: | |
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4]) for | |
tlbrs in dets_second[:, :5]] | |
else: | |
detections_second = [] | |
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] | |
dists = matching.iou_distance(r_tracked_stracks, detections_second) | |
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4) | |
for itracked, idet in matches: | |
track = r_tracked_stracks[itracked] | |
det = detections_second[idet] | |
if track.state == TrackState.Tracked: | |
track.update(det, self.frame_id) | |
activated_starcks.append(track) | |
else: | |
track.re_activate(det, self.frame_id, new_id=False) | |
refind_stracks.append(track) | |
for it in u_track: | |
track = r_tracked_stracks[it] | |
if not track.state == TrackState.Lost: | |
track.mark_lost() | |
lost_stracks.append(track) | |
# If no detections are obtained for tracks (u_track), the tracks are added to lost_tracks list and are marked lost | |
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' | |
detections = [detections[i] for i in u_detection] | |
dists = matching.iou_distance(unconfirmed, detections) | |
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) | |
for itracked, idet in matches: | |
unconfirmed[itracked].update(detections[idet], self.frame_id) | |
activated_starcks.append(unconfirmed[itracked]) | |
# The tracks which are yet not matched | |
for it in u_unconfirmed: | |
track = unconfirmed[it] | |
track.mark_removed() | |
removed_stracks.append(track) | |
# after all these confirmation steps, if a new detection is found, it is initialized for a new track | |
""" Step 4: Init new stracks""" | |
for inew in u_detection: | |
track = detections[inew] | |
if track.score < self.init_thresh: | |
continue | |
track.activate(self.kalman_filter, self.frame_id) | |
activated_starcks.append(track) | |
""" Step 5: Update state""" | |
# If the tracks are lost for more frames than the threshold number, the tracks are removed. | |
for track in self.lost_stracks: | |
if self.frame_id - track.end_frame > self.max_time_lost: | |
track.mark_removed() | |
removed_stracks.append(track) | |
# print('Remained match {} s'.format(t4-t3)) | |
# Update the self.tracked_stracks and self.lost_stracks using the updates in this step. | |
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks) | |
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks) | |
# self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack] | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks) | |
self.lost_stracks.extend(lost_stracks) | |
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks) | |
self.removed_stracks.extend(removed_stracks) | |
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) | |
# get scores of lost tracks | |
output_stracks = [track for track in self.tracked_stracks if track.is_activated] | |
logger.debug('===========Frame {}=========='.format(self.frame_id)) | |
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks])) | |
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks])) | |
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks])) | |
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks])) | |
# print('Final {} s'.format(t5-t4)) | |
return output_stracks | |
def joint_stracks(tlista, tlistb): | |
exists = {} | |
res = [] | |
for t in tlista: | |
exists[t.track_id] = 1 | |
res.append(t) | |
for t in tlistb: | |
tid = t.track_id | |
if not exists.get(tid, 0): | |
exists[tid] = 1 | |
res.append(t) | |
return res | |
def sub_stracks(tlista, tlistb): | |
stracks = {} | |
for t in tlista: | |
stracks[t.track_id] = t | |
for t in tlistb: | |
tid = t.track_id | |
if stracks.get(tid, 0): | |
del stracks[tid] | |
return list(stracks.values()) | |
def remove_duplicate_stracks(stracksa, stracksb): | |
pdist = matching.iou_distance(stracksa, stracksb) | |
pairs = np.where(pdist<0.15) | |
dupa, dupb = list(), list() | |
for p,q in zip(*pairs): | |
timep = stracksa[p].frame_id - stracksa[p].start_frame | |
timeq = stracksb[q].frame_id - stracksb[q].start_frame | |
if timep > timeq: | |
dupb.append(q) | |
else: | |
dupa.append(p) | |
resa = [t for i,t in enumerate(stracksa) if not i in dupa] | |
resb = [t for i,t in enumerate(stracksb) if not i in dupb] | |
return resa, resb | |