Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Copyright (c) 2021 megvii-model. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
# Modified from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------ | |
""" | |
DETR model and criterion classes. | |
""" | |
import copy | |
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
from typing import List | |
from util import box_ops | |
from util.misc import (NestedTensor, nested_tensor_from_tensor_list, | |
accuracy, get_world_size, interpolate, get_rank, | |
is_dist_avail_and_initialized, inverse_sigmoid) | |
from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou | |
from .backbone import build_backbone | |
from .matcher import build_matcher | |
from .deformable_transformer_plus import build_deforamble_transformer | |
from .qim import build as build_query_interaction_layer | |
from .memory_bank import build_memory_bank | |
from .deformable_detr import SetCriterion, MLP | |
from .segmentation import sigmoid_focal_loss | |
class ClipMatcher(SetCriterion): | |
def __init__(self, num_classes, | |
matcher, | |
weight_dict, | |
losses): | |
""" Create the criterion. | |
Parameters: | |
num_classes: number of object categories, omitting the special no-object category | |
matcher: module able to compute a matching between targets and proposals | |
weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
eos_coef: relative classification weight applied to the no-object category | |
losses: list of all the losses to be applied. See get_loss for list of available losses. | |
""" | |
super().__init__(num_classes, matcher, weight_dict, losses) | |
self.num_classes = num_classes | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.losses = losses | |
self.focal_loss = True | |
self.losses_dict = {} | |
self._current_frame_idx = 0 | |
def initialize_for_single_clip(self, gt_instances: List[Instances]): | |
self.gt_instances = gt_instances | |
self.num_samples = 0 | |
self.sample_device = None | |
self._current_frame_idx = 0 | |
self.losses_dict = {} | |
def _step(self): | |
self._current_frame_idx += 1 | |
def calc_loss_for_track_scores(self, track_instances: Instances): | |
frame_id = self._current_frame_idx - 1 | |
gt_instances = self.gt_instances[frame_id] | |
outputs = { | |
'pred_logits': track_instances.track_scores[None], | |
} | |
device = track_instances.track_scores.device | |
num_tracks = len(track_instances) | |
src_idx = torch.arange(num_tracks, dtype=torch.long, device=device) | |
tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks | |
track_losses = self.get_loss('labels', | |
outputs=outputs, | |
gt_instances=[gt_instances], | |
indices=[(src_idx, tgt_idx)], | |
num_boxes=1) | |
self.losses_dict.update( | |
{'frame_{}_track_{}'.format(frame_id, key): value for key, value in | |
track_losses.items()}) | |
def get_num_boxes(self, num_samples): | |
num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device) | |
if is_dist_avail_and_initialized(): | |
torch.distributed.all_reduce(num_boxes) | |
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() | |
return num_boxes | |
def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs): | |
loss_map = { | |
'labels': self.loss_labels, | |
'cardinality': self.loss_cardinality, | |
'boxes': self.loss_boxes, | |
} | |
assert loss in loss_map, f'do you really want to compute {loss} loss?' | |
return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs) | |
def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes): | |
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss | |
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] | |
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. | |
""" | |
# We ignore the regression loss of the track-disappear slots. | |
#TODO: Make this filter process more elegant. | |
filtered_idx = [] | |
for src_per_img, tgt_per_img in indices: | |
keep = tgt_per_img != -1 | |
filtered_idx.append((src_per_img[keep], tgt_per_img[keep])) | |
indices = filtered_idx | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs['pred_boxes'][idx] | |
target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) | |
# for pad target, don't calculate regression loss, judged by whether obj_id=-1 | |
target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16) | |
mask = (target_obj_ids != -1) | |
loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none') | |
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( | |
box_ops.box_cxcywh_to_xyxy(src_boxes[mask]), | |
box_ops.box_cxcywh_to_xyxy(target_boxes[mask]))) | |
losses = {} | |
losses['loss_bbox'] = loss_bbox.sum() / num_boxes | |
losses['loss_giou'] = loss_giou.sum() / num_boxes | |
return losses | |
def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False): | |
"""Classification loss (NLL) | |
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] | |
""" | |
src_logits = outputs['pred_logits'] | |
idx = self._get_src_permutation_idx(indices) | |
target_classes = torch.full(src_logits.shape[:2], self.num_classes, | |
dtype=torch.int64, device=src_logits.device) | |
# The matched gt for disappear track query is set -1. | |
labels = [] | |
for gt_per_img, (_, J) in zip(gt_instances, indices): | |
labels_per_img = torch.ones_like(J) | |
# set labels of track-appear slots to 0. | |
if len(gt_per_img) > 0: | |
labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]] | |
labels.append(labels_per_img) | |
target_classes_o = torch.cat(labels) | |
target_classes[idx] = target_classes_o | |
if self.focal_loss: | |
gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class | |
gt_labels_target = gt_labels_target.to(src_logits) | |
loss_ce = sigmoid_focal_loss(src_logits.flatten(1), | |
gt_labels_target.flatten(1), | |
alpha=0.25, | |
gamma=2, | |
num_boxes=num_boxes, mean_in_dim1=False) | |
loss_ce = loss_ce.sum() | |
else: | |
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) | |
losses = {'loss_ce': loss_ce} | |
if log: | |
# TODO this should probably be a separate loss, not hacked in this one here | |
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] | |
return losses | |
def match_for_single_frame(self, outputs: dict): | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} | |
gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image. | |
track_instances: Instances = outputs_without_aux['track_instances'] | |
pred_logits_i = track_instances.pred_logits # predicted logits of i-th image. | |
pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image. | |
obj_idxes = gt_instances_i.obj_ids | |
obj_idxes_list = obj_idxes.detach().cpu().numpy().tolist() | |
obj_idx_to_gt_idx = {obj_idx: gt_idx for gt_idx, obj_idx in enumerate(obj_idxes_list)} | |
outputs_i = { | |
'pred_logits': pred_logits_i.unsqueeze(0), | |
'pred_boxes': pred_boxes_i.unsqueeze(0), | |
} | |
# step1. inherit and update the previous tracks. | |
num_disappear_track = 0 | |
for j in range(len(track_instances)): | |
obj_id = track_instances.obj_idxes[j].item() | |
# set new target idx. | |
if obj_id >= 0: | |
if obj_id in obj_idx_to_gt_idx: | |
track_instances.matched_gt_idxes[j] = obj_idx_to_gt_idx[obj_id] | |
else: | |
num_disappear_track += 1 | |
track_instances.matched_gt_idxes[j] = -1 # track-disappear case. | |
else: | |
track_instances.matched_gt_idxes[j] = -1 | |
full_track_idxes = torch.arange(len(track_instances), dtype=torch.long).to(pred_logits_i.device) | |
matched_track_idxes = (track_instances.obj_idxes >= 0) # occu | |
prev_matched_indices = torch.stack( | |
[full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1).to( | |
pred_logits_i.device) | |
# step2. select the unmatched slots. | |
# note that the FP tracks whose obj_idxes are -2 will not be selected here. | |
unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1] | |
# step3. select the untracked gt instances (new tracks). | |
tgt_indexes = track_instances.matched_gt_idxes | |
tgt_indexes = tgt_indexes[tgt_indexes != -1] | |
tgt_state = torch.zeros(len(gt_instances_i)).to(pred_logits_i.device) | |
tgt_state[tgt_indexes] = 1 | |
untracked_tgt_indexes = torch.arange(len(gt_instances_i)).to(pred_logits_i.device)[tgt_state == 0] | |
# untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i)) | |
untracked_gt_instances = gt_instances_i[untracked_tgt_indexes] | |
def match_for_single_decoder_layer(unmatched_outputs, matcher): | |
new_track_indices = matcher(unmatched_outputs, | |
[untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)] | |
src_idx = new_track_indices[0][0] | |
tgt_idx = new_track_indices[0][1] | |
# concat src and tgt. | |
new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]], | |
dim=1).to(pred_logits_i.device) | |
return new_matched_indices | |
# step4. do matching between the unmatched slots and GTs. | |
unmatched_outputs = { | |
'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0), | |
'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0), | |
} | |
new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher) | |
# step5. update obj_idxes according to the new matching result. | |
track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long() | |
track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1] | |
# step6. calculate iou. | |
active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0) | |
active_track_boxes = track_instances.pred_boxes[active_idxes] | |
if len(active_track_boxes) > 0: | |
gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]] | |
active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes) | |
gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes) | |
track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes)) | |
# step7. merge the unmatched pairs and the matched pairs. | |
matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0) | |
# step8. calculate losses. | |
self.num_samples += len(gt_instances_i) + num_disappear_track | |
self.sample_device = pred_logits_i.device | |
for loss in self.losses: | |
new_track_loss = self.get_loss(loss, | |
outputs=outputs_i, | |
gt_instances=[gt_instances_i], | |
indices=[(matched_indices[:, 0], matched_indices[:, 1])], | |
num_boxes=1) | |
self.losses_dict.update( | |
{'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()}) | |
if 'aux_outputs' in outputs: | |
for i, aux_outputs in enumerate(outputs['aux_outputs']): | |
unmatched_outputs_layer = { | |
'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0), | |
'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0), | |
} | |
new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher) | |
matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0) | |
for loss in self.losses: | |
if loss == 'masks': | |
# Intermediate masks losses are too costly to compute, we ignore them. | |
continue | |
l_dict = self.get_loss(loss, | |
aux_outputs, | |
gt_instances=[gt_instances_i], | |
indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])], | |
num_boxes=1, ) | |
self.losses_dict.update( | |
{'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in | |
l_dict.items()}) | |
self._step() | |
return track_instances | |
def forward(self, outputs, input_data: dict): | |
# losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict]. | |
losses = outputs.pop("losses_dict") | |
num_samples = self.get_num_boxes(self.num_samples) | |
for loss_name, loss in losses.items(): | |
losses[loss_name] /= num_samples | |
return losses | |
class RuntimeTrackerBase(object): | |
def __init__(self, score_thresh=0.8, filter_score_thresh=0.6, miss_tolerance=5): | |
self.score_thresh = score_thresh | |
self.filter_score_thresh = filter_score_thresh | |
self.miss_tolerance = miss_tolerance | |
self.max_obj_id = 0 | |
def clear(self): | |
self.max_obj_id = 0 | |
def update(self, track_instances: Instances): | |
track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0 | |
for i in range(len(track_instances)): | |
if track_instances.obj_idxes[i] == -1 and track_instances.scores[i] >= self.score_thresh: | |
# print("track {} has score {}, assign obj_id {}".format(i, track_instances.scores[i], self.max_obj_id)) | |
track_instances.obj_idxes[i] = self.max_obj_id | |
self.max_obj_id += 1 | |
elif track_instances.obj_idxes[i] >= 0 and track_instances.scores[i] < self.filter_score_thresh: | |
track_instances.disappear_time[i] += 1 | |
if track_instances.disappear_time[i] >= self.miss_tolerance: | |
# Set the obj_id to -1. | |
# Then this track will be removed by TrackEmbeddingLayer. | |
track_instances.obj_idxes[i] = -1 | |
class TrackerPostProcess(nn.Module): | |
""" This module converts the model's output into the format expected by the coco api""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, track_instances: Instances, target_size) -> Instances: | |
""" Perform the computation | |
Parameters: | |
outputs: raw outputs of the model | |
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
For evaluation, this must be the original image size (before any data augmentation) | |
For visualization, this should be the image size after data augment, but before padding | |
""" | |
out_logits = track_instances.pred_logits | |
out_bbox = track_instances.pred_boxes | |
prob = out_logits.sigmoid() | |
# prob = out_logits[...,:1].sigmoid() | |
scores, labels = prob.max(-1) | |
# convert to [x0, y0, x1, y1] format | |
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
# and from relative [0, 1] to absolute [0, height] coordinates | |
img_h, img_w = target_size | |
scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes) | |
boxes = boxes * scale_fct[None, :] | |
track_instances.boxes = boxes | |
track_instances.scores = scores | |
track_instances.labels = labels | |
# track_instances.remove('pred_logits') | |
# track_instances.remove('pred_boxes') | |
return track_instances | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
class MOTR(nn.Module): | |
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed, | |
aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None): | |
""" Initializes the model. | |
Parameters: | |
backbone: torch module of the backbone to be used. See backbone.py | |
transformer: torch module of the transformer architecture. See transformer.py | |
num_classes: number of object classes | |
num_queries: number of object queries, ie detection slot. This is the maximal number of objects | |
DETR can detect in a single image. For COCO, we recommend 100 queries. | |
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. | |
with_box_refine: iterative bounding box refinement | |
two_stage: two-stage Deformable DETR | |
""" | |
super().__init__() | |
self.num_queries = num_queries | |
self.track_embed = track_embed | |
self.transformer = transformer | |
hidden_dim = transformer.d_model | |
self.num_classes = num_classes | |
self.class_embed = nn.Linear(hidden_dim, num_classes) | |
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
self.num_feature_levels = num_feature_levels | |
if not two_stage: | |
self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) | |
if num_feature_levels > 1: | |
num_backbone_outs = len(backbone.strides) | |
input_proj_list = [] | |
for _ in range(num_backbone_outs): | |
in_channels = backbone.num_channels[_] | |
input_proj_list.append(nn.Sequential( | |
nn.Conv2d(in_channels, hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
)) | |
for _ in range(num_feature_levels - num_backbone_outs): | |
input_proj_list.append(nn.Sequential( | |
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), | |
nn.GroupNorm(32, hidden_dim), | |
)) | |
in_channels = hidden_dim | |
self.input_proj = nn.ModuleList(input_proj_list) | |
else: | |
self.input_proj = nn.ModuleList([ | |
nn.Sequential( | |
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
)]) | |
self.backbone = backbone | |
self.aux_loss = aux_loss | |
self.with_box_refine = with_box_refine | |
self.two_stage = two_stage | |
prior_prob = 0.01 | |
bias_value = -math.log((1 - prior_prob) / prior_prob) | |
self.class_embed.bias.data = torch.ones(num_classes) * bias_value | |
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) | |
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) | |
for proj in self.input_proj: | |
nn.init.xavier_uniform_(proj[0].weight, gain=1) | |
nn.init.constant_(proj[0].bias, 0) | |
# if two-stage, the last class_embed and bbox_embed is for region proposal generation | |
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers | |
if with_box_refine: | |
self.class_embed = _get_clones(self.class_embed, num_pred) | |
self.bbox_embed = _get_clones(self.bbox_embed, num_pred) | |
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) | |
# hack implementation for iterative bounding box refinement | |
self.transformer.decoder.bbox_embed = self.bbox_embed | |
else: | |
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) | |
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) | |
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) | |
self.transformer.decoder.bbox_embed = None | |
if two_stage: | |
# hack implementation for two-stage | |
self.transformer.decoder.class_embed = self.class_embed | |
for box_embed in self.bbox_embed: | |
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) | |
self.post_process = TrackerPostProcess() | |
self.track_base = RuntimeTrackerBase() | |
self.criterion = criterion | |
self.memory_bank = memory_bank | |
self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length | |
def _generate_empty_tracks(self): | |
track_instances = Instances((1, 1)) | |
num_queries, dim = self.query_embed.weight.shape # (300, 512) | |
device = self.query_embed.weight.device | |
track_instances.ref_pts = self.transformer.reference_points(self.query_embed.weight[:, :dim // 2]) | |
track_instances.query_pos = self.query_embed.weight | |
track_instances.output_embedding = torch.zeros((num_queries, dim >> 1), device=device) | |
track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) | |
track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) | |
track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device) | |
track_instances.iou = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device) | |
track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device) | |
mem_bank_len = self.mem_bank_len | |
track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, dim // 2), dtype=torch.float32, device=device) | |
track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device) | |
track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device) | |
return track_instances.to(self.query_embed.weight.device) | |
def clear(self): | |
self.track_base.clear() | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
return [{'pred_logits': a, 'pred_boxes': b, } | |
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] | |
def _forward_single_image(self, samples, track_instances: Instances): | |
features, pos = self.backbone(samples) | |
src, mask = features[-1].decompose() | |
assert mask is not None | |
srcs = [] | |
masks = [] | |
for l, feat in enumerate(features): | |
src, mask = feat.decompose() | |
srcs.append(self.input_proj[l](src)) | |
masks.append(mask) | |
assert mask is not None | |
if self.num_feature_levels > len(srcs): | |
_len_srcs = len(srcs) | |
for l in range(_len_srcs, self.num_feature_levels): | |
if l == _len_srcs: | |
src = self.input_proj[l](features[-1].tensors) | |
else: | |
src = self.input_proj[l](srcs[-1]) | |
m = samples.mask | |
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] | |
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) | |
srcs.append(src) | |
masks.append(mask) | |
pos.append(pos_l) | |
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, track_instances.query_pos, ref_pts=track_instances.ref_pts) | |
outputs_classes = [] | |
outputs_coords = [] | |
for lvl in range(hs.shape[0]): | |
if lvl == 0: | |
reference = init_reference | |
else: | |
reference = inter_references[lvl - 1] | |
reference = inverse_sigmoid(reference) | |
outputs_class = self.class_embed[lvl](hs[lvl]) | |
tmp = self.bbox_embed[lvl](hs[lvl]) | |
if reference.shape[-1] == 4: | |
tmp += reference | |
else: | |
assert reference.shape[-1] == 2 | |
tmp[..., :2] += reference | |
outputs_coord = tmp.sigmoid() | |
outputs_classes.append(outputs_class) | |
outputs_coords.append(outputs_coord) | |
outputs_class = torch.stack(outputs_classes) | |
outputs_coord = torch.stack(outputs_coords) | |
ref_pts_all = torch.cat([init_reference[None], inter_references[:, :, :, :2]], dim=0) | |
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], 'ref_pts': ref_pts_all[5]} | |
if self.aux_loss: | |
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) | |
with torch.no_grad(): | |
if self.training: | |
track_scores = outputs_class[-1, 0, :].sigmoid().max(dim=-1).values | |
else: | |
track_scores = outputs_class[-1, 0, :, 0].sigmoid() | |
track_instances.scores = track_scores | |
track_instances.pred_logits = outputs_class[-1, 0] | |
track_instances.pred_boxes = outputs_coord[-1, 0] | |
track_instances.output_embedding = hs[-1, 0] | |
if self.training: | |
# the track id will be assigned by the mather. | |
out['track_instances'] = track_instances | |
track_instances = self.criterion.match_for_single_frame(out) | |
else: | |
# each track will be assigned an unique global id by the track base. | |
self.track_base.update(track_instances) | |
if self.memory_bank is not None: | |
track_instances = self.memory_bank(track_instances) | |
# track_instances.track_scores = track_instances.track_scores[..., 0] | |
# track_instances.scores = track_instances.track_scores.sigmoid() | |
if self.training: | |
self.criterion.calc_loss_for_track_scores(track_instances) | |
tmp = {} | |
tmp['init_track_instances'] = self._generate_empty_tracks() | |
tmp['track_instances'] = track_instances | |
out_track_instances = self.track_embed(tmp) | |
out['track_instances'] = out_track_instances | |
return out | |
def inference_single_image(self, img, ori_img_size, track_instances=None): | |
if not isinstance(img, NestedTensor): | |
img = nested_tensor_from_tensor_list(img) | |
# if track_instances is None: | |
# track_instances = self._generate_empty_tracks() | |
track_instances = self._generate_empty_tracks() | |
res = self._forward_single_image(img, track_instances=track_instances) | |
track_instances = res['track_instances'] | |
track_instances = self.post_process(track_instances, ori_img_size) | |
ret = {'track_instances': track_instances} | |
if 'ref_pts' in res: | |
ref_pts = res['ref_pts'] | |
img_h, img_w = ori_img_size | |
scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts) | |
ref_pts = ref_pts * scale_fct[None] | |
ret['ref_pts'] = ref_pts | |
return ret | |
def forward(self, data: dict): | |
if self.training: | |
self.criterion.initialize_for_single_clip(data['gt_instances']) | |
frames = data['imgs'] # list of Tensor. | |
outputs = { | |
'pred_logits': [], | |
'pred_boxes': [], | |
} | |
track_instances = self._generate_empty_tracks() | |
for frame in frames: | |
if not isinstance(frame, NestedTensor): | |
frame = nested_tensor_from_tensor_list([frame]) | |
frame_res = self._forward_single_image(frame, track_instances) | |
track_instances = frame_res['track_instances'] | |
outputs['pred_logits'].append(frame_res['pred_logits']) | |
outputs['pred_boxes'].append(frame_res['pred_boxes']) | |
if not self.training: | |
outputs['track_instances'] = track_instances | |
else: | |
outputs['losses_dict'] = self.criterion.losses_dict | |
return outputs | |
def build(args): | |
dataset_to_num_classes = { | |
'coco': 91, | |
'coco_panoptic': 250, | |
'e2e_mot': 1, | |
'e2e_joint': 1, | |
'e2e_static_mot': 1 | |
} | |
assert args.dataset_file in dataset_to_num_classes | |
num_classes = dataset_to_num_classes[args.dataset_file] | |
device = torch.device(args.device) | |
backbone = build_backbone(args) | |
transformer = build_deforamble_transformer(args) | |
d_model = transformer.d_model | |
hidden_dim = args.dim_feedforward | |
query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2) | |
img_matcher = build_matcher(args) | |
num_frames_per_batch = max(args.sampler_lengths) | |
weight_dict = {} | |
for i in range(num_frames_per_batch): | |
weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef, | |
'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef, | |
'frame_{}_loss_giou'.format(i): args.giou_loss_coef, | |
}) | |
# TODO this is a hack | |
if args.aux_loss: | |
for i in range(num_frames_per_batch): | |
for j in range(args.dec_layers - 1): | |
weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef, | |
'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef, | |
'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef, | |
}) | |
if args.memory_bank_type is not None and len(args.memory_bank_type) > 0: | |
memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2) | |
for i in range(num_frames_per_batch): | |
weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef}) | |
else: | |
memory_bank = None | |
losses = ['labels', 'boxes'] | |
criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses) | |
criterion.to(device) | |
postprocessors = {} | |
model = MOTR( | |
backbone, | |
transformer, | |
track_embed=query_interaction_layer, | |
num_feature_levels=args.num_feature_levels, | |
num_classes=num_classes, | |
num_queries=args.num_queries, | |
aux_loss=args.aux_loss, | |
criterion=criterion, | |
with_box_refine=args.with_box_refine, | |
two_stage=args.two_stage, | |
memory_bank=memory_bank, | |
) | |
return model, criterion, postprocessors | |