Spaces:
Runtime error
Runtime error
Mat static_resize(Mat& img) { | |
float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// r = std::min(r, 1.0f); | |
int unpad_w = r * img.cols; | |
int unpad_h = r * img.rows; | |
Mat re(unpad_h, unpad_w, CV_8UC3); | |
resize(img, re, re.size()); | |
Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114)); | |
re.copyTo(out(Rect(0, 0, re.cols, re.rows))); | |
return out; | |
} | |
// YOLOX use the same focus in yolov5 | |
class YoloV5Focus : public ncnn::Layer | |
{ | |
public: | |
YoloV5Focus() | |
{ | |
one_blob_only = true; | |
} | |
virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const | |
{ | |
int w = bottom_blob.w; | |
int h = bottom_blob.h; | |
int channels = bottom_blob.c; | |
int outw = w / 2; | |
int outh = h / 2; | |
int outc = channels * 4; | |
top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator); | |
if (top_blob.empty()) | |
return -100; | |
for (int p = 0; p < outc; p++) | |
{ | |
const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2); | |
float* outptr = top_blob.channel(p); | |
for (int i = 0; i < outh; i++) | |
{ | |
for (int j = 0; j < outw; j++) | |
{ | |
*outptr = *ptr; | |
outptr += 1; | |
ptr += 2; | |
} | |
ptr += w; | |
} | |
} | |
return 0; | |
} | |
}; | |
DEFINE_LAYER_CREATOR(YoloV5Focus) | |
struct GridAndStride | |
{ | |
int grid0; | |
int grid1; | |
int stride; | |
}; | |
static inline float intersection_area(const Object& a, const Object& b) | |
{ | |
cv::Rect_<float> inter = a.rect & b.rect; | |
return inter.area(); | |
} | |
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
{ | |
int i = left; | |
int j = right; | |
float p = faceobjects[(left + right) / 2].prob; | |
while (i <= j) | |
{ | |
while (faceobjects[i].prob > p) | |
i++; | |
while (faceobjects[j].prob < p) | |
j--; | |
if (i <= j) | |
{ | |
// swap | |
std::swap(faceobjects[i], faceobjects[j]); | |
i++; | |
j--; | |
} | |
} | |
{ | |
{ | |
if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
} | |
{ | |
if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
} | |
} | |
} | |
static void qsort_descent_inplace(std::vector<Object>& objects) | |
{ | |
if (objects.empty()) | |
return; | |
qsort_descent_inplace(objects, 0, objects.size() - 1); | |
} | |
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) | |
{ | |
picked.clear(); | |
const int n = faceobjects.size(); | |
std::vector<float> areas(n); | |
for (int i = 0; i < n; i++) | |
{ | |
areas[i] = faceobjects[i].rect.area(); | |
} | |
for (int i = 0; i < n; i++) | |
{ | |
const Object& a = faceobjects[i]; | |
int keep = 1; | |
for (int j = 0; j < (int)picked.size(); j++) | |
{ | |
const Object& b = faceobjects[picked[j]]; | |
// intersection over union | |
float inter_area = intersection_area(a, b); | |
float union_area = areas[i] + areas[picked[j]] - inter_area; | |
// float IoU = inter_area / union_area | |
if (inter_area / union_area > nms_threshold) | |
keep = 0; | |
} | |
if (keep) | |
picked.push_back(i); | |
} | |
} | |
static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) | |
{ | |
for (int i = 0; i < (int)strides.size(); i++) | |
{ | |
int stride = strides[i]; | |
int num_grid_w = target_w / stride; | |
int num_grid_h = target_h / stride; | |
for (int g1 = 0; g1 < num_grid_h; g1++) | |
{ | |
for (int g0 = 0; g0 < num_grid_w; g0++) | |
{ | |
GridAndStride gs; | |
gs.grid0 = g0; | |
gs.grid1 = g1; | |
gs.stride = stride; | |
grid_strides.push_back(gs); | |
} | |
} | |
} | |
} | |
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects) | |
{ | |
const int num_grid = feat_blob.h; | |
const int num_class = feat_blob.w - 5; | |
const int num_anchors = grid_strides.size(); | |
const float* feat_ptr = feat_blob.channel(0); | |
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
{ | |
const int grid0 = grid_strides[anchor_idx].grid0; | |
const int grid1 = grid_strides[anchor_idx].grid1; | |
const int stride = grid_strides[anchor_idx].stride; | |
// yolox/models/yolo_head.py decode logic | |
// outputs[..., :2] = (outputs[..., :2] + grids) * strides | |
// outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides | |
float x_center = (feat_ptr[0] + grid0) * stride; | |
float y_center = (feat_ptr[1] + grid1) * stride; | |
float w = exp(feat_ptr[2]) * stride; | |
float h = exp(feat_ptr[3]) * stride; | |
float x0 = x_center - w * 0.5f; | |
float y0 = y_center - h * 0.5f; | |
float box_objectness = feat_ptr[4]; | |
for (int class_idx = 0; class_idx < num_class; class_idx++) | |
{ | |
float box_cls_score = feat_ptr[5 + class_idx]; | |
float box_prob = box_objectness * box_cls_score; | |
if (box_prob > prob_threshold) | |
{ | |
Object obj; | |
obj.rect.x = x0; | |
obj.rect.y = y0; | |
obj.rect.width = w; | |
obj.rect.height = h; | |
obj.label = class_idx; | |
obj.prob = box_prob; | |
objects.push_back(obj); | |
} | |
} // class loop | |
feat_ptr += feat_blob.w; | |
} // point anchor loop | |
} | |
static int detect_yolox(ncnn::Mat& in_pad, std::vector<Object>& objects, ncnn::Extractor ex, float scale) | |
{ | |
ex.input("images", in_pad); | |
std::vector<Object> proposals; | |
{ | |
ncnn::Mat out; | |
ex.extract("output", out); | |
static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX | |
std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0])); | |
std::vector<GridAndStride> grid_strides; | |
generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides); | |
generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals); | |
} | |
// sort all proposals by score from highest to lowest | |
qsort_descent_inplace(proposals); | |
// apply nms with nms_threshold | |
std::vector<int> picked; | |
nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH); | |
int count = picked.size(); | |
objects.resize(count); | |
for (int i = 0; i < count; i++) | |
{ | |
objects[i] = proposals[picked[i]]; | |
// adjust offset to original unpadded | |
float x0 = (objects[i].rect.x) / scale; | |
float y0 = (objects[i].rect.y) / scale; | |
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
// clip | |
// x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
// y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
// x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
// y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
objects[i].rect.x = x0; | |
objects[i].rect.y = y0; | |
objects[i].rect.width = x1 - x0; | |
objects[i].rect.height = y1 - y0; | |
} | |
return 0; | |
} | |
int main(int argc, char** argv) | |
{ | |
if (argc != 2) | |
{ | |
fprintf(stderr, "Usage: %s [videopath]\n", argv[0]); | |
return -1; | |
} | |
ncnn::Net yolox; | |
//yolox.opt.use_vulkan_compute = true; | |
//yolox.opt.use_bf16_storage = true; | |
yolox.opt.num_threads = 20; | |
//ncnn::set_cpu_powersave(0); | |
//ncnn::set_omp_dynamic(0); | |
//ncnn::set_omp_num_threads(20); | |
// Focus in yolov5 | |
yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator); | |
yolox.load_param("bytetrack_s_op.param"); | |
yolox.load_model("bytetrack_s_op.bin"); | |
ncnn::Extractor ex = yolox.create_extractor(); | |
const char* videopath = argv[1]; | |
VideoCapture cap(videopath); | |
if (!cap.isOpened()) | |
return 0; | |
int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH); | |
int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT); | |
int fps = cap.get(CV_CAP_PROP_FPS); | |
long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT)); | |
cout << "Total frames: " << nFrame << endl; | |
VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h)); | |
Mat img; | |
BYTETracker tracker(fps, 30); | |
int num_frames = 0; | |
int total_ms = 1; | |
for (;;) | |
{ | |
if(!cap.read(img)) | |
break; | |
num_frames ++; | |
if (num_frames % 20 == 0) | |
{ | |
cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl; | |
} | |
if (img.empty()) | |
break; | |
float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
Mat pr_img = static_resize(img); | |
ncnn::Mat in_pad = ncnn::Mat::from_pixels_resize(pr_img.data, ncnn::Mat::PIXEL_BGR2RGB, INPUT_W, INPUT_H, INPUT_W, INPUT_H); | |
// python 0-1 input tensor with rgb_means = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225) | |
// so for 0-255 input image, rgb_mean should multiply 255 and norm should div by std. | |
const float mean_vals[3] = {255.f * 0.485f, 255.f * 0.456, 255.f * 0.406f}; | |
const float norm_vals[3] = {1 / (255.f * 0.229f), 1 / (255.f * 0.224f), 1 / (255.f * 0.225f)}; | |
in_pad.substract_mean_normalize(mean_vals, norm_vals); | |
std::vector<Object> objects; | |
auto start = chrono::system_clock::now(); | |
//detect_yolox(img, objects); | |
detect_yolox(in_pad, objects, ex, scale); | |
vector<STrack> output_stracks = tracker.update(objects); | |
auto end = chrono::system_clock::now(); | |
total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count(); | |
for (int i = 0; i < output_stracks.size(); i++) | |
{ | |
vector<float> tlwh = output_stracks[i].tlwh; | |
bool vertical = tlwh[2] / tlwh[3] > 1.6; | |
if (tlwh[2] * tlwh[3] > 20 && !vertical) | |
{ | |
Scalar s = tracker.get_color(output_stracks[i].track_id); | |
putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5), | |
0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); | |
rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2); | |
} | |
} | |
putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()), | |
Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA); | |
writer.write(img); | |
char c = waitKey(1); | |
if (c > 0) | |
{ | |
break; | |
} | |
} | |
cap.release(); | |
cout << "FPS: " << num_frames * 1000000 / total_ms << endl; | |
return 0; | |
} | |