bytetrack / deploy /ncnn /cpp /src /bytetrack.cpp
AK391
all files
7734d5b
raw
history blame
11.9 kB
#include "layer.h"
#include "net.h"
#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#include <opencv2/opencv.hpp>
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include <chrono>
#include "BYTETracker.h"
#define YOLOX_NMS_THRESH 0.7 // nms threshold
#define YOLOX_CONF_THRESH 0.1 // threshold of bounding box prob
#define INPUT_W 1088 // target image size w after resize
#define INPUT_H 608 // target image size h after resize
Mat static_resize(Mat& img) {
float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
// r = std::min(r, 1.0f);
int unpad_w = r * img.cols;
int unpad_h = r * img.rows;
Mat re(unpad_h, unpad_w, CV_8UC3);
resize(img, re, re.size());
Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
return out;
}
// YOLOX use the same focus in yolov5
class YoloV5Focus : public ncnn::Layer
{
public:
YoloV5Focus()
{
one_blob_only = true;
}
virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int channels = bottom_blob.c;
int outw = w / 2;
int outh = h / 2;
int outc = channels * 4;
top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
if (top_blob.empty())
return -100;
#pragma omp parallel for num_threads(opt.num_threads)
for (int p = 0; p < outc; p++)
{
const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
float* outptr = top_blob.channel(p);
for (int i = 0; i < outh; i++)
{
for (int j = 0; j < outw; j++)
{
*outptr = *ptr;
outptr += 1;
ptr += 2;
}
ptr += w;
}
}
return 0;
}
};
DEFINE_LAYER_CREATOR(YoloV5Focus)
struct GridAndStride
{
int grid0;
int grid1;
int stride;
};
static inline float intersection_area(const Object& a, const Object& b)
{
cv::Rect_<float> inter = a.rect & b.rect;
return inter.area();
}
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
int i = left;
int j = right;
float p = faceobjects[(left + right) / 2].prob;
while (i <= j)
{
while (faceobjects[i].prob > p)
i++;
while (faceobjects[j].prob < p)
j--;
if (i <= j)
{
// swap
std::swap(faceobjects[i], faceobjects[j]);
i++;
j--;
}
}
#pragma omp parallel sections
{
#pragma omp section
{
if (left < j) qsort_descent_inplace(faceobjects, left, j);
}
#pragma omp section
{
if (i < right) qsort_descent_inplace(faceobjects, i, right);
}
}
}
static void qsort_descent_inplace(std::vector<Object>& objects)
{
if (objects.empty())
return;
qsort_descent_inplace(objects, 0, objects.size() - 1);
}
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
picked.clear();
const int n = faceobjects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
{
areas[i] = faceobjects[i].rect.area();
}
for (int i = 0; i < n; i++)
{
const Object& a = faceobjects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const Object& b = faceobjects[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area
if (inter_area / union_area > nms_threshold)
keep = 0;
}
if (keep)
picked.push_back(i);
}
}
static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides)
{
for (int i = 0; i < (int)strides.size(); i++)
{
int stride = strides[i];
int num_grid_w = target_w / stride;
int num_grid_h = target_h / stride;
for (int g1 = 0; g1 < num_grid_h; g1++)
{
for (int g0 = 0; g0 < num_grid_w; g0++)
{
GridAndStride gs;
gs.grid0 = g0;
gs.grid1 = g1;
gs.stride = stride;
grid_strides.push_back(gs);
}
}
}
}
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
const int num_grid = feat_blob.h;
const int num_class = feat_blob.w - 5;
const int num_anchors = grid_strides.size();
const float* feat_ptr = feat_blob.channel(0);
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
{
const int grid0 = grid_strides[anchor_idx].grid0;
const int grid1 = grid_strides[anchor_idx].grid1;
const int stride = grid_strides[anchor_idx].stride;
// yolox/models/yolo_head.py decode logic
// outputs[..., :2] = (outputs[..., :2] + grids) * strides
// outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
float x_center = (feat_ptr[0] + grid0) * stride;
float y_center = (feat_ptr[1] + grid1) * stride;
float w = exp(feat_ptr[2]) * stride;
float h = exp(feat_ptr[3]) * stride;
float x0 = x_center - w * 0.5f;
float y0 = y_center - h * 0.5f;
float box_objectness = feat_ptr[4];
for (int class_idx = 0; class_idx < num_class; class_idx++)
{
float box_cls_score = feat_ptr[5 + class_idx];
float box_prob = box_objectness * box_cls_score;
if (box_prob > prob_threshold)
{
Object obj;
obj.rect.x = x0;
obj.rect.y = y0;
obj.rect.width = w;
obj.rect.height = h;
obj.label = class_idx;
obj.prob = box_prob;
objects.push_back(obj);
}
} // class loop
feat_ptr += feat_blob.w;
} // point anchor loop
}
static int detect_yolox(ncnn::Mat& in_pad, std::vector<Object>& objects, ncnn::Extractor ex, float scale)
{
ex.input("images", in_pad);
std::vector<Object> proposals;
{
ncnn::Mat out;
ex.extract("output", out);
static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX
std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0]));
std::vector<GridAndStride> grid_strides;
generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals);
}
// sort all proposals by score from highest to lowest
qsort_descent_inplace(proposals);
// apply nms with nms_threshold
std::vector<int> picked;
nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH);
int count = picked.size();
objects.resize(count);
for (int i = 0; i < count; i++)
{
objects[i] = proposals[picked[i]];
// adjust offset to original unpadded
float x0 = (objects[i].rect.x) / scale;
float y0 = (objects[i].rect.y) / scale;
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
// clip
// x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
// y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
// x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
// y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
objects[i].rect.x = x0;
objects[i].rect.y = y0;
objects[i].rect.width = x1 - x0;
objects[i].rect.height = y1 - y0;
}
return 0;
}
int main(int argc, char** argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [videopath]\n", argv[0]);
return -1;
}
ncnn::Net yolox;
//yolox.opt.use_vulkan_compute = true;
//yolox.opt.use_bf16_storage = true;
yolox.opt.num_threads = 20;
//ncnn::set_cpu_powersave(0);
//ncnn::set_omp_dynamic(0);
//ncnn::set_omp_num_threads(20);
// Focus in yolov5
yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);
yolox.load_param("bytetrack_s_op.param");
yolox.load_model("bytetrack_s_op.bin");
ncnn::Extractor ex = yolox.create_extractor();
const char* videopath = argv[1];
VideoCapture cap(videopath);
if (!cap.isOpened())
return 0;
int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH);
int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
int fps = cap.get(CV_CAP_PROP_FPS);
long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT));
cout << "Total frames: " << nFrame << endl;
VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h));
Mat img;
BYTETracker tracker(fps, 30);
int num_frames = 0;
int total_ms = 1;
for (;;)
{
if(!cap.read(img))
break;
num_frames ++;
if (num_frames % 20 == 0)
{
cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl;
}
if (img.empty())
break;
float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
Mat pr_img = static_resize(img);
ncnn::Mat in_pad = ncnn::Mat::from_pixels_resize(pr_img.data, ncnn::Mat::PIXEL_BGR2RGB, INPUT_W, INPUT_H, INPUT_W, INPUT_H);
// python 0-1 input tensor with rgb_means = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)
// so for 0-255 input image, rgb_mean should multiply 255 and norm should div by std.
const float mean_vals[3] = {255.f * 0.485f, 255.f * 0.456, 255.f * 0.406f};
const float norm_vals[3] = {1 / (255.f * 0.229f), 1 / (255.f * 0.224f), 1 / (255.f * 0.225f)};
in_pad.substract_mean_normalize(mean_vals, norm_vals);
std::vector<Object> objects;
auto start = chrono::system_clock::now();
//detect_yolox(img, objects);
detect_yolox(in_pad, objects, ex, scale);
vector<STrack> output_stracks = tracker.update(objects);
auto end = chrono::system_clock::now();
total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();
for (int i = 0; i < output_stracks.size(); i++)
{
vector<float> tlwh = output_stracks[i].tlwh;
bool vertical = tlwh[2] / tlwh[3] > 1.6;
if (tlwh[2] * tlwh[3] > 20 && !vertical)
{
Scalar s = tracker.get_color(output_stracks[i].track_id);
putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5),
0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
}
}
putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()),
Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
writer.write(img);
char c = waitKey(1);
if (c > 0)
{
break;
}
}
cap.release();
cout << "FPS: " << num_frames * 1000000 / total_ms << endl;
return 0;
}