Spaces:
Runtime error
Runtime error
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import lap | |
import numpy as np | |
import scipy | |
from cython_bbox import bbox_overlaps as bbox_ious | |
from scipy.spatial.distance import cdist | |
chi2inv95 = { | |
1: 3.8415, | |
2: 5.9915, | |
3: 7.8147, | |
4: 9.4877, | |
5: 11.070, | |
6: 12.592, | |
7: 14.067, | |
8: 15.507, | |
9: 16.919} | |
def merge_matches(m1, m2, shape): | |
O,P,Q = shape | |
m1 = np.asarray(m1) | |
m2 = np.asarray(m2) | |
M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) | |
M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) | |
mask = M1*M2 | |
match = mask.nonzero() | |
match = list(zip(match[0], match[1])) | |
unmatched_O = tuple(set(range(O)) - set([i for i, j in match])) | |
unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match])) | |
return match, unmatched_O, unmatched_Q | |
def _indices_to_matches(cost_matrix, indices, thresh): | |
matched_cost = cost_matrix[tuple(zip(*indices))] | |
matched_mask = (matched_cost <= thresh) | |
matches = indices[matched_mask] | |
unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) | |
unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) | |
return matches, unmatched_a, unmatched_b | |
def linear_assignment(cost_matrix, thresh): | |
if cost_matrix.size == 0: | |
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) | |
matches, unmatched_a, unmatched_b = [], [], [] | |
cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) | |
for ix, mx in enumerate(x): | |
if mx >= 0: | |
matches.append([ix, mx]) | |
unmatched_a = np.where(x < 0)[0] | |
unmatched_b = np.where(y < 0)[0] | |
matches = np.asarray(matches) | |
return matches, unmatched_a, unmatched_b | |
def ious(atlbrs, btlbrs): | |
""" | |
Compute cost based on IoU | |
:type atlbrs: list[tlbr] | np.ndarray | |
:type atlbrs: list[tlbr] | np.ndarray | |
:rtype ious np.ndarray | |
""" | |
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float) | |
if ious.size == 0: | |
return ious | |
ious = bbox_ious( | |
np.ascontiguousarray(atlbrs, dtype=np.float), | |
np.ascontiguousarray(btlbrs, dtype=np.float) | |
) | |
return ious | |
def iou_distance(atracks, btracks): | |
""" | |
Compute cost based on IoU | |
:type atracks: list[STrack] | |
:type btracks: list[STrack] | |
:rtype cost_matrix np.ndarray | |
""" | |
if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): | |
atlbrs = atracks | |
btlbrs = btracks | |
else: | |
atlbrs = [track.tlbr for track in atracks] | |
btlbrs = [track.tlbr for track in btracks] | |
_ious = ious(atlbrs, btlbrs) | |
cost_matrix = 1 - _ious | |
return cost_matrix | |
def embedding_distance(tracks, detections, metric='cosine'): | |
""" | |
:param tracks: list[STrack] | |
:param detections: list[BaseTrack] | |
:param metric: | |
:return: cost_matrix np.ndarray | |
""" | |
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float) | |
if cost_matrix.size == 0: | |
return cost_matrix | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float) | |
#for i, track in enumerate(tracks): | |
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float) | |
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features | |
return cost_matrix | |
def embedding_distance2(tracks, detections, metric='cosine'): | |
""" | |
:param tracks: list[STrack] | |
:param detections: list[BaseTrack] | |
:param metric: | |
:return: cost_matrix np.ndarray | |
""" | |
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float) | |
if cost_matrix.size == 0: | |
return cost_matrix | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float) | |
#for i, track in enumerate(tracks): | |
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float) | |
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features | |
track_features = np.asarray([track.features[0] for track in tracks], dtype=np.float) | |
cost_matrix2 = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features | |
track_features = np.asarray([track.features[len(track.features)-1] for track in tracks], dtype=np.float) | |
cost_matrix3 = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features | |
for row in range(len(cost_matrix)): | |
cost_matrix[row] = (cost_matrix[row]+cost_matrix2[row]+cost_matrix3[row])/3 | |
return cost_matrix | |
def vis_id_feature_A_distance(tracks, detections, metric='cosine'): | |
track_features = [] | |
det_features = [] | |
leg1 = len(tracks) | |
leg2 = len(detections) | |
cost_matrix = np.zeros((leg1, leg2), dtype=np.float) | |
cost_matrix_det = np.zeros((leg1, leg2), dtype=np.float) | |
cost_matrix_track = np.zeros((leg1, leg2), dtype=np.float) | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float) | |
if leg2 != 0: | |
cost_matrix_det = np.maximum(0.0, cdist(det_features, det_features, metric)) | |
if leg1 != 0: | |
cost_matrix_track = np.maximum(0.0, cdist(track_features, track_features, metric)) | |
if cost_matrix.size == 0: | |
return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track | |
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) | |
if leg1 > 10: | |
leg1 = 10 | |
tracks = tracks[:10] | |
if leg2 > 10: | |
leg2 = 10 | |
detections = detections[:10] | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float) | |
return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track | |
def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): | |
if cost_matrix.size == 0: | |
return cost_matrix | |
gating_dim = 2 if only_position else 4 | |
gating_threshold = chi2inv95[gating_dim] | |
measurements = np.asarray([det.to_xyah() for det in detections]) | |
for row, track in enumerate(tracks): | |
gating_distance = kf.gating_distance( | |
track.mean, track.covariance, measurements, only_position) | |
cost_matrix[row, gating_distance > gating_threshold] = np.inf | |
return cost_matrix | |
def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): | |
if cost_matrix.size == 0: | |
return cost_matrix | |
gating_dim = 2 if only_position else 4 | |
gating_threshold = chi2inv95[gating_dim] | |
measurements = np.asarray([det.to_xyah() for det in detections]) | |
for row, track in enumerate(tracks): | |
gating_distance = kf.gating_distance( | |
track.mean, track.covariance, measurements, only_position, metric='maha') | |
cost_matrix[row, gating_distance > gating_threshold] = np.inf | |
cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance | |
return cost_matrix | |