bytetrack / tools /track.py
AK391
all files
7734d5b
raw
history blame
10.4 kB
from loguru import logger
import torch
import torch.backends.cudnn as cudnn
from torch.nn.parallel import DistributedDataParallel as DDP
from yolox.core import launch
from yolox.exp import get_exp
from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger
from yolox.evaluators import MOTEvaluator
import argparse
import os
import random
import warnings
import glob
import motmetrics as mm
from collections import OrderedDict
from pathlib import Path
def make_parser():
parser = argparse.ArgumentParser("YOLOX Eval")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
# distributed
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--dist-url",
default=None,
type=str,
help="url used to set up distributed training",
)
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
parser.add_argument(
"-d", "--devices", default=None, type=int, help="device for training"
)
parser.add_argument(
"--local_rank", default=0, type=int, help="local rank for dist training"
)
parser.add_argument(
"--num_machines", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your expriment description file",
)
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision evaluating.",
)
parser.add_argument(
"--fuse",
dest="fuse",
default=False,
action="store_true",
help="Fuse conv and bn for testing.",
)
parser.add_argument(
"--trt",
dest="trt",
default=False,
action="store_true",
help="Using TensorRT model for testing.",
)
parser.add_argument(
"--test",
dest="test",
default=False,
action="store_true",
help="Evaluating on test-dev set.",
)
parser.add_argument(
"--speed",
dest="speed",
default=False,
action="store_true",
help="speed test only.",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
# det args
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument("--conf", default=0.01, type=float, help="test conf")
parser.add_argument("--nms", default=0.7, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument("--seed", default=None, type=int, help="eval seed")
# tracking args
parser.add_argument("--track_thresh", type=float, default=0.6, help="tracking confidence threshold")
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
parser.add_argument("--match_thresh", type=float, default=0.9, help="matching threshold for tracking")
parser.add_argument("--min-box-area", type=float, default=100, help='filter out tiny boxes')
parser.add_argument("--mot20", dest="mot20", default=False, action="store_true", help="test mot20.")
return parser
def compare_dataframes(gts, ts):
accs = []
names = []
for k, tsacc in ts.items():
if k in gts:
logger.info('Comparing {}...'.format(k))
accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
names.append(k)
else:
logger.warning('No ground truth for {}, skipping.'.format(k))
return accs, names
@logger.catch
def main(exp, args, num_gpu):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed testing. This will turn on the CUDNN deterministic setting, "
)
is_distributed = num_gpu > 1
# set environment variables for distributed training
cudnn.benchmark = True
rank = args.local_rank
# rank = get_local_rank()
file_name = os.path.join(exp.output_dir, args.experiment_name)
if rank == 0:
os.makedirs(file_name, exist_ok=True)
results_folder = os.path.join(file_name, "track_results")
os.makedirs(results_folder, exist_ok=True)
setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a")
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model()
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
#logger.info("Model Structure:\n{}".format(str(model)))
val_loader = exp.get_eval_loader(args.batch_size, is_distributed, args.test)
evaluator = MOTEvaluator(
args=args,
dataloader=val_loader,
img_size=exp.test_size,
confthre=exp.test_conf,
nmsthre=exp.nmsthre,
num_classes=exp.num_classes,
)
torch.cuda.set_device(rank)
model.cuda(rank)
model.eval()
if not args.speed and not args.trt:
if args.ckpt is None:
ckpt_file = os.path.join(file_name, "best_ckpt.pth.tar")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint")
loc = "cuda:{}".format(rank)
ckpt = torch.load(ckpt_file, map_location=loc)
# load the model state dict
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if is_distributed:
model = DDP(model, device_ids=[rank])
if args.fuse:
logger.info("\tFusing model...")
model = fuse_model(model)
if args.trt:
assert (
not args.fuse and not is_distributed and args.batch_size == 1
), "TensorRT model is not support model fusing and distributed inferencing!"
trt_file = os.path.join(file_name, "model_trt.pth")
assert os.path.exists(
trt_file
), "TensorRT model is not found!\n Run tools/trt.py first!"
model.head.decode_in_inference = False
decoder = model.head.decode_outputs
else:
trt_file = None
decoder = None
# start evaluate
*_, summary = evaluator.evaluate(
model, is_distributed, args.fp16, trt_file, decoder, exp.test_size, results_folder
)
logger.info("\n" + summary)
# evaluate MOTA
mm.lap.default_solver = 'lap'
if exp.val_ann == 'val_half.json':
gt_type = '_val_half'
else:
gt_type = ''
print('gt_type', gt_type)
if args.mot20:
gtfiles = glob.glob(os.path.join('datasets/MOT20/train', '*/gt/gt{}.txt'.format(gt_type)))
else:
gtfiles = glob.glob(os.path.join('datasets/mot/train', '*/gt/gt{}.txt'.format(gt_type)))
print('gt_files', gtfiles)
tsfiles = [f for f in glob.glob(os.path.join(results_folder, '*.txt')) if not os.path.basename(f).startswith('eval')]
logger.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
logger.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
logger.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
logger.info('Loading files.')
gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=1)) for f in gtfiles])
ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=-1)) for f in tsfiles])
mh = mm.metrics.create()
accs, names = compare_dataframes(gt, ts)
logger.info('Running metrics')
metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked',
'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses',
'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects']
summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
# summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
# print(mm.io.render_summary(
# summary, formatters=mh.formatters,
# namemap=mm.io.motchallenge_metric_names))
div_dict = {
'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'],
'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']}
for divisor in div_dict:
for divided in div_dict[divisor]:
summary[divided] = (summary[divided] / summary[divisor])
fmt = mh.formatters
change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked',
'partially_tracked', 'mostly_lost']
for k in change_fmt_list:
fmt[k] = fmt['mota']
print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names))
metrics = mm.metrics.motchallenge_metrics + ['num_objects']
summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
logger.info('Completed')
if __name__ == "__main__":
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
exp.merge(args.opts)
if not args.experiment_name:
args.experiment_name = exp.exp_name
num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
assert num_gpu <= torch.cuda.device_count()
launch(
main,
num_gpu,
args.num_machines,
args.machine_rank,
backend=args.dist_backend,
dist_url=args.dist_url,
args=(exp, args, num_gpu),
)