Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import pickle | |
import re | |
import time | |
import numpy as np | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.svm import SVC | |
# Load models and preprocessing components | |
def load_components(): | |
# Load deep learning models | |
cnn_model = load_model('cnn_model.h5') | |
lstm_model = load_model('lstm_model.h5') | |
# Load traditional ML models | |
with open('rf_model.pkl', 'rb') as f: | |
rf_model = pickle.load(f) | |
with open('svm_model.pkl', 'rb') as f: | |
svm_model = pickle.load(f) | |
# Load tokenizer and vectorizer | |
with open('sql_tokenizer.pkl', 'rb') as f: | |
tokenizer_data = pickle.load(f) | |
with open('tfidf_vectorizer.pkl', 'rb') as f: | |
tfidf_vectorizer = pickle.load(f) | |
return { | |
'cnn_model': cnn_model, | |
'lstm_model': lstm_model, | |
'rf_model': rf_model, | |
'svm_model': svm_model, | |
'tokenizer': tokenizer_data['tokenizer'], | |
'max_sequence_length': tokenizer_data['max_sequence_length'], | |
'tfidf_vectorizer': tfidf_vectorizer | |
} | |
# Try to load all components | |
try: | |
components = load_components() | |
model_loading_error = None | |
except Exception as e: | |
model_loading_error = str(e) | |
components = None | |
# Preprocess functions | |
def preprocess_query_for_deep_learning(query, tokenizer, max_sequence_length): | |
""" | |
Tokenizes and pads the input query to prepare it for deep learning models. | |
""" | |
sequences = tokenizer.texts_to_sequences([query]) | |
padded = pad_sequences(sequences, maxlen=max_sequence_length, padding='post') | |
return padded | |
def preprocess_query_for_traditional_ml(query, tfidf_vectorizer): | |
""" | |
Transforms the input query using TF-IDF for traditional ML models. | |
""" | |
return tfidf_vectorizer.transform([query]) | |
# Define improved regex patterns for SQL injection attempts | |
SQL_INJECTION_PATTERNS = [ | |
# SQL comment syntax that follows a quote (likely injection) | |
r"(?i)'.*--", | |
# Quote followed by OR/AND with comparison (classic injection pattern) | |
r"(?i)'\s*(OR|AND)\s*['\d\w]+=\s*['\d\w]+", | |
# SQL Comment without preceding from a query context | |
r"(?i)(\s|^)--", | |
# Multiple query execution with semicolon | |
r"(?i)'.*;.*--", | |
# UNION-based injections | |
r"(?i)'\s*UNION\s+(ALL\s+)?SELECT", | |
# Time-delay attacks | |
r"(?i)'\s*;\s*WAITFOR\s+DELAY", | |
# DROP/ALTER table attacks | |
r"(?i)'\s*;\s*(DROP|ALTER)", | |
# Quote followed by a true condition | |
r"(?i)'\s*OR\s*'?\d+'?\s*=\s*'?\d+'?", | |
# Quote followed by always true condition like 1=1 | |
r"(?i)'\s*OR\s*(['\"]\d+['\"])=(['\"]\d+['\"])", | |
# Batch queries | |
r"(?i);\s*(SELECT|INSERT|UPDATE|DELETE|DROP)", | |
# CAST attacks | |
r"(?i)CAST\s*\(.+AS\s+.+\)", | |
# Typical SQL function calls in injections | |
r"(?i)'\s*;\s*(EXEC|EXECUTE).*", | |
] | |
# Safe SQL patterns that should not trigger false positives | |
SAFE_SQL_PATTERNS = [ | |
# Standard SELECT query | |
r"(?i)^SELECT\s+[\w\d\s,*]+\s+FROM\s+[\w\d]+(\s+WHERE\s+[\w\d\s=<>']+)?$", | |
# Standard INSERT query | |
r"(?i)^INSERT\s+INTO\s+[\w\d]+\s*\([^)]+\)\s*VALUES\s*\([^)]+\)$", | |
# Standard UPDATE query | |
r"(?i)^UPDATE\s+[\w\d]+\s+SET\s+[\w\d\s=',]+(\s+WHERE\s+[\w\d\s=<>']+)?$", | |
] | |
# Rule-based detection function | |
def detect_sql_injection_with_regex(query): | |
""" | |
Detects potential SQL injection patterns using improved regex. | |
Returns True if any malicious pattern matches and no safe pattern matches. | |
""" | |
# First check if the query matches any safe pattern | |
for pattern in SAFE_SQL_PATTERNS: | |
if re.search(pattern, query.strip()): | |
# Query matches a safe pattern | |
return False, None | |
# Then check for malicious patterns | |
for pattern in SQL_INJECTION_PATTERNS: | |
match = re.search(pattern, query) | |
if match: | |
return True, match.group(0) | |
# If no malicious pattern found | |
return False, None | |
# Ensemble prediction function | |
def predict_with_ensemble(query, components): | |
""" | |
Uses an ensemble of models to predict if the query is malicious. | |
Returns predictions from individual models and ensemble vote. | |
""" | |
# Get individual model predictions | |
# Random Forest prediction | |
query_tfidf = preprocess_query_for_traditional_ml(query, components['tfidf_vectorizer']) | |
rf_pred = int(components['rf_model'].predict(query_tfidf)[0]) | |
# SVM prediction | |
svm_pred = int(components['svm_model'].predict(query_tfidf)[0]) | |
# CNN prediction | |
query_padded = preprocess_query_for_deep_learning(query, components['tokenizer'], components['max_sequence_length']) | |
cnn_probability = components['cnn_model'].predict(query_padded)[0][0] | |
cnn_pred = int(cnn_probability > 0.5) | |
# LSTM prediction | |
lstm_probability = components['lstm_model'].predict(query_padded)[0][0] | |
lstm_pred = int(lstm_probability > 0.5) | |
# Majority voting | |
votes = [rf_pred, svm_pred, cnn_pred, lstm_pred] | |
ensemble_pred = np.bincount(votes).argmax() | |
return { | |
'rf': rf_pred, | |
'svm': svm_pred, | |
'cnn': {'prediction': cnn_pred, 'probability': float(cnn_probability)}, | |
'lstm': {'prediction': lstm_pred, 'probability': float(lstm_probability)}, | |
'ensemble': int(ensemble_pred), | |
'vote_count': {0: list(votes).count(0), 1: list(votes).count(1)} | |
} | |
# Initialize session state for UI flow control | |
if 'analysis_stage' not in st.session_state: | |
st.session_state.analysis_stage = 0 # 0: not started, 1: regex done, 2: ensemble done | |
if 'regex_result' not in st.session_state: | |
st.session_state.regex_result = None | |
if 'ensemble_result' not in st.session_state: | |
st.session_state.ensemble_result = None | |
# App title and description | |
st.title("🛡️ SQL Injection Detection") | |
st.markdown(""" | |
This application uses a multi-layered approach to detect potentially malicious SQL queries: | |
1. **Rule-based detection** using improved regex patterns | |
2. **Ensemble learning** with majority voting from 4 models: | |
- Random Forest | |
- Support Vector Machine | |
- Convolutional Neural Network | |
- Long Short-Term Memory Network | |
Enter a query below or select from the examples to begin analysis. | |
""") | |
# Display warning if models couldn't be loaded | |
if model_loading_error: | |
st.warning(f"⚠️ Some models could not be loaded. The application will only use rule-based detection. Error: {model_loading_error}") | |
# Example queries in a dropdown | |
st.subheader("Select an Example or Enter Your Own Query") | |
example_categories = { | |
"Benign SQL Queries": [ | |
"SELECT * FROM users WHERE username='admin'", | |
"SELECT id, name, price FROM products WHERE category_id=5", | |
"SELECT COUNT(*) FROM orders WHERE date > '2023-01-01'", | |
"INSERT INTO logs (user_id, action) VALUES (42, 'login')", | |
"UPDATE customers SET last_login='2023-06-15' WHERE id=101", | |
"DELETE FROM sessions WHERE last_activity < '2023-01-01'", | |
"SELECT email FROM subscribers WHERE active=1", | |
"INSERT INTO feedback (user_id, message) VALUES (87, 'Great service!')", | |
"UPDATE inventory SET stock = stock - 1 WHERE product_id = 300", | |
"SELECT name FROM employees WHERE department = 'Sales'", | |
"SELECT AVG(rating) FROM reviews WHERE product_id = 55", | |
"INSERT INTO audit_log (timestamp, event) VALUES (CURRENT_TIMESTAMP, 'update')", | |
"SELECT * FROM appointments WHERE doctor_id = 10 AND status = 'confirmed'", | |
"UPDATE settings SET value='dark' WHERE key='theme'", | |
"SELECT DISTINCT city FROM customers WHERE country='USA'", | |
"DELETE FROM cart_items WHERE user_id=12 AND product_id=78", | |
"SELECT MAX(salary) FROM employees WHERE role='manager'", | |
"INSERT INTO payments (user_id, amount, method) VALUES (33, 99.99, 'credit')", | |
"UPDATE products SET price = price * 1.1 WHERE category_id = 7", | |
"SELECT * FROM messages WHERE sender_id = 5 AND is_read = 0" | |
], | |
"Malicious SQL Queries": [ | |
"' OR 1=1 --", | |
"admin'; DROP TABLE users; --", | |
"SELECT * FROM users WHERE username='' UNION SELECT username,password FROM admin_users --", | |
"'; WAITFOR DELAY '0:0:10' --", | |
"admin' OR '1'='1", | |
"' OR 'a'='a", | |
"' OR 1=1#", | |
"' OR 1=1/*", | |
"admin'--", | |
"'; EXEC xp_cmdshell('dir'); --", | |
"' OR EXISTS(SELECT * FROM users WHERE username = 'admin') --", | |
"1; DROP TABLE sessions --", | |
"'; SHUTDOWN --", | |
"' OR SLEEP(5) --", | |
"' AND 1=(SELECT COUNT(*) FROM users) --", | |
"admin' AND SUBSTRING(password, 1, 1) = 'a' --", | |
"' UNION ALL SELECT NULL,NULL,NULL --", | |
"0' OR 1=1 ORDER BY 1 --", | |
"1' AND (SELECT COUNT(*) FROM users) > 0 --", | |
"' OR (SELECT ASCII(SUBSTRING(password,1,1)) FROM users WHERE username='admin') > 64 --" | |
] | |
} | |
# First create category selection | |
category = st.selectbox( | |
"Choose query category:", | |
options=list(example_categories.keys()), | |
key="category" | |
) | |
# Then show examples from selected category | |
example = st.selectbox( | |
"Select an example:", | |
options=example_categories[category], | |
key="example" | |
) | |
# Allow user to use the selected example or enter their own | |
query_source = st.radio( | |
"Query source:", | |
["Use selected example", "Enter my own query"], | |
key="query_source" | |
) | |
if query_source == "Enter my own query": | |
query = st.text_area( | |
"Enter SQL Query:", | |
height=100, | |
placeholder="Type your SQL query here..." | |
) | |
else: | |
query = example | |
st.code(query, language="sql") | |
# Analysis process | |
if st.button("Start Analysis") and query: | |
# Reset analysis state | |
st.session_state.analysis_stage = 1 | |
# Step 1: Rule-based detection | |
with st.spinner("Running rule-based detection..."): | |
time.sleep(0.5) # Simulate processing time | |
is_malicious, matched_pattern = detect_sql_injection_with_regex(query) | |
st.session_state.regex_result = (is_malicious, matched_pattern) | |
# If we have completed the regex analysis | |
if st.session_state.analysis_stage >= 1 and st.session_state.regex_result is not None: | |
is_malicious, matched_pattern = st.session_state.regex_result | |
st.subheader("Step 1: Rule-Based Detection") | |
if is_malicious: | |
st.error("🚨 SQL Injection Detected (Rule-Based)!") | |
st.warning(f"Matched pattern: `{matched_pattern}`") | |
# Show details in expander | |
with st.expander("Rule-Based Detection Details"): | |
st.markdown(""" | |
**What was detected:** | |
- The query matched one or more known SQL injection patterns | |
- This type of pattern is commonly used in SQL injection attacks | |
- Review the query for security implications | |
""") | |
st.markdown("**Common SQL injection techniques detected:**") | |
st.markdown(""" | |
- Comment sequences (`--`) after quotes | |
- Always true conditions (`OR 1=1`) | |
- Union-based injections | |
- SQL command injections | |
""") | |
else: | |
st.success("✅ No SQL injection patterns detected using rules") | |
with st.expander("Rule-Based Detection Details"): | |
st.markdown(""" | |
**Analysis Details:** | |
- The query did not match any known SQL injection patterns | |
- The structure appears to be standard SQL syntax | |
- No suspicious patterns were identified | |
""") | |
# Ask if user wants to proceed with ensemble detection | |
proceed = st.radio( | |
"Would you like to proceed with ensemble model detection?", | |
["Yes", "No"], | |
index=0, # Default to Yes | |
key="proceed" | |
) | |
# Check if models are loaded before allowing ensemble analysis | |
if proceed == "Yes" and not model_loading_error: | |
if st.button("Run Ensemble Analysis"): | |
st.session_state.analysis_stage = 2 | |
with st.spinner("Running ensemble models..."): | |
time.sleep(1) # Simulate processing time | |
ensemble_results = predict_with_ensemble(query, components) | |
st.session_state.ensemble_result = ensemble_results | |
elif proceed == "Yes" and model_loading_error: | |
st.error("Cannot run ensemble analysis because models failed to load.") | |
# If we have completed the ensemble analysis | |
if st.session_state.analysis_stage >= 2 and st.session_state.ensemble_result is not None: | |
results = st.session_state.ensemble_result | |
st.subheader("Step 2: Ensemble Model Detection") | |
# Create a visual representation of voting | |
vote_benign = results['vote_count'][0] | |
vote_malicious = results['vote_count'][1] | |
st.markdown(f"### Model Votes") | |
# Create columns for the voting visualization | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Safe Votes", vote_benign) | |
with col2: | |
st.metric("Malicious Votes", vote_malicious) | |
# Create a progress bar to visualize the voting ratio | |
vote_ratio = vote_malicious / (vote_benign + vote_malicious) | |
st.progress(vote_ratio, text=f"Malicious vote ratio: {vote_ratio*100:.0f}%") | |
# Display individual model results | |
st.markdown("### Individual Model Results") | |
model_cols = st.columns(4) | |
with model_cols[0]: | |
st.markdown("**Random Forest**") | |
if results['rf'] == 1: | |
st.error("⚠️ Malicious") | |
else: | |
st.success("✅ Safe") | |
with model_cols[1]: | |
st.markdown("**SVM**") | |
if results['svm'] == 1: | |
st.error("⚠️ Malicious") | |
else: | |
st.success("✅ Safe") | |
with model_cols[2]: | |
st.markdown("**CNN**") | |
cnn_prob = results['cnn']['probability'] * 100 | |
if results['cnn']['prediction'] == 1: | |
st.error(f"⚠️ Malicious ({cnn_prob:.1f}%)") | |
else: | |
st.success(f"✅ Safe ({100-cnn_prob:.1f}%)") | |
with model_cols[3]: | |
st.markdown("**LSTM**") | |
lstm_prob = results['lstm']['probability'] * 100 | |
if results['lstm']['prediction'] == 1: | |
st.error(f"⚠️ Malicious ({lstm_prob:.1f}%)") | |
else: | |
st.success(f"✅ Safe ({100-lstm_prob:.1f}%)") | |
# Final ensemble verdict | |
st.markdown("### Ensemble Verdict") | |
if results['ensemble'] == 1: | |
st.error("🚨 SQL Injection Detected by Majority Vote!") | |
else: | |
st.success("✅ Query deemed safe by majority vote") | |
# Explanation in expander | |
with st.expander("Ensemble Detection Details"): | |
st.markdown(""" | |
**How ensemble voting works:** | |
- Each model casts a vote (0 for safe, 1 for malicious) | |
- The final decision is based on majority vote | |
- This approach combines the strengths of different model architectures | |
- More robust than any single model alone | |
""") | |
if results['ensemble'] == 1: | |
st.markdown(f""" | |
**Why was this flagged:** | |
- {vote_malicious} out of 4 models identified this query as potentially malicious | |
- The majority vote indicates suspicious patterns | |
- This query should be carefully reviewed before execution | |
""") | |
else: | |
st.markdown(f""" | |
**Why was this considered safe:** | |
- {vote_benign} out of 4 models identified this query as likely safe | |
- The majority vote indicates standard SQL patterns | |
- No significant red flags were detected in the ensemble | |
""") | |
# Final verdict combining both approaches | |
st.subheader("Final Analysis") | |
is_malicious_regex, _ = st.session_state.regex_result | |
is_malicious_ensemble = results['ensemble'] == 1 | |
if is_malicious_regex or is_malicious_ensemble: | |
st.error("⚠️ This query appears to contain SQL injection patterns. Review carefully before executing.") | |
else: | |
st.success("✅ This query appears safe based on both rule-based and ensemble detection.") | |
st.info("ℹ️ Remember: Always use parameterized queries and proper input validation in production systems.") | |
# Reset button | |
if st.button("Analyze Another Query"): | |
st.session_state.analysis_stage = 0 | |
st.session_state.regex_result = None | |
st.session_state.ensemble_result = None | |
st.experimental_rerun() | |
# Sidebar with additional info | |
with st.sidebar: | |
st.header("About This App") | |
st.markdown(""" | |
### Multi-Layer Detection Process | |
1. **Rule-Based Detection** | |
- Fast, pattern-matching approach | |
- Uses improved regex to identify SQL injection patterns | |
- Reduces false positives with safe pattern recognition | |
2. **Ensemble Detection** | |
- Combines 4 different machine learning models: | |
- Random Forest | |
- Support Vector Machine (SVM) | |
- Convolutional Neural Network (CNN) | |
- Long Short-Term Memory Network (LSTM) | |
- Final decision by majority voting | |
""") | |
st.markdown("### Machine Learning Architecture") | |
st.code(""" | |
# Traditional ML | |
- Random Forest (n_estimators=100) | |
- SVM (kernel='linear') | |
# CNN Architecture | |
Sequential([ | |
Embedding(input_dim=10000, output_dim=128), | |
Conv1D(filters=64, kernel_size=3, activation='relu'), | |
MaxPooling1D(pool_size=2), | |
Dropout(0.5), | |
Conv1D(filters=128, kernel_size=3, activation='relu'), | |
MaxPooling1D(pool_size=2), | |
Flatten(), | |
Dense(64, activation='relu'), | |
Dropout(0.5), | |
Dense(1, activation='sigmoid') | |
]) | |
# LSTM Architecture | |
Sequential([ | |
Embedding(input_dim=10000, output_dim=128), | |
Bidirectional(LSTM(64, return_sequences=True)), | |
Dropout(0.5), | |
Bidirectional(LSTM(32)), | |
Dropout(0.5), | |
Dense(32, activation='relu'), | |
Dense(1, activation='sigmoid') | |
]) | |
""") | |
st.markdown("### How It Works") | |
st.markdown(""" | |
1. **Step 1:** Rule-based patterns scan for known SQL injection techniques | |
2. **Step 2:** Ensemble of 4 models evaluates the query structure | |
3. **Final Analysis:** Combined verdict from both approaches | |
""") | |
st.markdown("---") | |
st.warning("**Note:** This is a demonstration tool, not a replacement for proper security measures.") | |
# Footer | |
st.markdown("---") | |
st.markdown(""" | |
<style> | |
.footer { | |
position: fixed; | |
left: 0; | |
bottom: 0; | |
width: 100%; | |
background-color: white; | |
color: black; | |
text-align: center; | |
padding: 10px; | |
border-top: 1px solid #e5e5e5; | |
} | |
</style> | |
<div class="footer"> | |
<p>Developed with ❤️ using Streamlit | SQL Injection Detection System</p> | |
</div> | |
""", unsafe_allow_html=True) |