EAV123's picture
Update app.py
a9ba8bb verified
import streamlit as st
import pandas as pd
import lightgbm as lgb
import pickle
# Load the trained LightGBM model
with open('lightgbm_model.pkl', 'rb') as model_file:
model = pickle.load(model_file)
# Define mappings
workclass_map = {
'Private': 1,
'State-gov': 2,
'Federal-gov': 3,
'Self-emp-not-inc': 4,
'Self-emp-inc': 5,
'Local-gov': 6,
'Without-pay': 7,
'Never-worked': 8,
'?': 9
}
education_ranks = {
'Preschool': 1,
'1st-4th': 2,
'5th-6th': 3,
'7th-8th': 4,
'9th': 5,
'10th': 6,
'11th': 7,
'12th': 8,
'HS-grad': 9,
'Some-college': 10,
'Assoc-voc': 11,
'Assoc-acdm': 12,
'Bachelors': 13,
'Masters': 14,
'Prof-school': 15,
'Doctorate': 16
}
marital_map = {
'Married-civ-spouse': 1,
'Married-spouse-absent': 1,
'Married-AF-spouse': 1,
'Widowed': 2,
'Divorced': 2,
'Separated': 2,
'Never-married': 2
}
occupation_map = {
'Exec-managerial': 1,
'Machine-op-inspct': 2,
'Prof-specialty': 3,
'Other-service': 4,
'Adm-clerical': 5,
'Craft-repair': 6,
'Transport-moving': 7,
'Handlers-cleaners': 8,
'Sales': 9,
'Farming-fishing': 10,
'Tech-support': 11,
'Protective-serv': 12,
'Armed-Forces': 13,
'Priv-house-serv': 14
}
relationship_map = {
'Not-in-family': 1,
'Unmarried': 2,
'Own-child': 3,
'Other-relative': 4,
'Husband': 5,
'Wife': 6
}
income_map = {
'<=50K': 0,
'>50K': 1
}
# Define the input fields for the user to provide data
def get_user_input():
age = st.number_input('Age', min_value=0, max_value=120, value=30)
workclass = st.selectbox('Workclass', list(workclass_map.keys()))
fnlwgt = st.number_input('Fnlwgt', min_value=0, value=100000)
education = st.selectbox('Education', list(education_ranks.keys()))
education_num = st.number_input('Education Num', min_value=0, max_value=20, value=10)
marital_status = st.selectbox('Marital Status', list(marital_map.keys()))
occupation = st.selectbox('Occupation', list(occupation_map.keys()))
relationship = st.selectbox('Relationship', list(relationship_map.keys()))
capital_gain = st.number_input('Capital Gain', min_value=0, value=0)
capital_loss = st.number_input('Capital Loss', min_value=0, value=0)
hours_per_week = st.number_input('Hours Per Week', min_value=0, max_value=168, value=40)
user_data = {
'age': age,
'workclass_rank': workclass_map[workclass],
'fnlwgt': fnlwgt,
'education_rank': education_ranks[education],
'education.num': education_num,
'marital_status_binary': marital_map[marital_status],
'occupation_rank': occupation_map[occupation],
'relationship_rank': relationship_map[relationship],
'capital.gain': capital_gain,
'capital.loss': capital_loss,
'hours.per.week': hours_per_week
}
features = pd.DataFrame(user_data, index=[0])
return features
# Main function to run the app
def main():
st.title('Income Prediction App')
st.write('This app predicts whether a person makes over $50K a year based on their demographics and work information.')
user_input = get_user_input()
st.subheader('User Input:')
st.write(user_input)
prediction_proba = model.predict(user_input)
st.subheader('Prediction:')
if prediction_proba[0] < 0.5:
st.write('The model predicts: Income <= $50K')
else:
st.write('The model predicts: Income > $50K')
st.subheader('Prediction Probability:')
st.write(f'Probability of making over $50K: {prediction_proba[0]:.2f}')
if __name__ == '__main__':
main()