Upload 11 files
Browse files- .gitattributes +1 -0
- 26.wav +3 -0
- app.py +60 -14
- checkpoint-60/README.md +202 -0
- checkpoint-60/adapter_config.json +32 -0
- checkpoint-60/adapter_model.safetensors +3 -0
- checkpoint-60/optimizer.pt +3 -0
- checkpoint-60/preprocessor_config.json +14 -0
- checkpoint-60/rng_state.pth +3 -0
- checkpoint-60/scheduler.pt +3 -0
- checkpoint-60/trainer_state.json +122 -0
- checkpoint-60/training_args.bin +3 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
ariane6_example.mp3 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
ariane6_example.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
26.wav filter=lfs diff=lfs merge=lfs -text
|
26.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09a2d84379a713d2517638b6d188a9493221b863339a8de2b06a9b7baa9de866
|
| 3 |
+
size 14582680
|
app.py
CHANGED
|
@@ -1,22 +1,68 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
def transcribe(audio):
|
| 8 |
-
result = MODEL.transcribe(audio)
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return ""
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
ui = gr.Interface(
|
| 19 |
-
fn=
|
| 20 |
inputs=gr.Audio(
|
| 21 |
sources=["microphone", "upload"],
|
| 22 |
type="filepath",
|
|
@@ -26,12 +72,12 @@ ui = gr.Interface(
|
|
| 26 |
label="Transcription",
|
| 27 |
placeholder="The transcribed text will appear here...",
|
| 28 |
),
|
| 29 |
-
title="ECHO",
|
| 30 |
description="""
|
| 31 |
-
This is a demo of the transcription capabilities of "ECHO". This could be
|
| 32 |
|
| 33 |
### How to use:
|
| 34 |
-
1. **Record or Upload**: Click on the microphone icon 🎙️ to record audio,
|
| 35 |
You can also use the **Examples** provided below, as inputs, by clicking on them.
|
| 36 |
2. **Click Submit**: Clicking the submit button will transcribe the audio.
|
| 37 |
3. **Read the Transcription**: The transcribed text will appear in the text box below the audio input section.
|
|
@@ -39,4 +85,4 @@ ui = gr.Interface(
|
|
| 39 |
examples=examples,
|
| 40 |
)
|
| 41 |
|
| 42 |
-
ui.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 4 |
+
from peft import PeftModel
|
| 5 |
+
import torchaudio
|
| 6 |
|
| 7 |
+
# Constants
|
| 8 |
+
MODEL = "openai/whisper-small.en"
|
| 9 |
+
ADAPTER_DIR = "./adapter"
|
| 10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
SAMPLE_RATE = 16000
|
| 12 |
+
CHUNK_LENGTH = 30 # Length of each audio chunk in seconds
|
| 13 |
|
| 14 |
+
# Load processor and model
|
| 15 |
+
processor = WhisperProcessor.from_pretrained(MODEL)
|
| 16 |
+
base_model = WhisperForConditionalGeneration.from_pretrained(MODEL)
|
| 17 |
+
finetuned_model = PeftModel.from_pretrained(base_model, ADAPTER_DIR)
|
| 18 |
+
finetuned_model = finetuned_model.merge_and_unload().to(DEVICE)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
def load_audio(audio_path: str):
|
| 22 |
+
"""Load and preprocess the audio file."""
|
| 23 |
+
speech_array, sampling_rate = torchaudio.load(audio_path)
|
|
|
|
| 24 |
|
| 25 |
+
# Convert stereo to mono by averaging the two channels
|
| 26 |
+
if speech_array.shape[0] > 1:
|
| 27 |
+
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
| 28 |
|
| 29 |
+
# Resample to the model's required sample rate
|
| 30 |
+
if sampling_rate != SAMPLE_RATE:
|
| 31 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, SAMPLE_RATE)
|
| 32 |
+
speech_array = resampler(speech_array)
|
| 33 |
+
|
| 34 |
+
return speech_array.squeeze().numpy()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def chunk_audio(audio, chunk_length=CHUNK_LENGTH):
|
| 38 |
+
"""Split the audio into chunks of specified length in seconds."""
|
| 39 |
+
chunk_samples = chunk_length * SAMPLE_RATE
|
| 40 |
+
return [audio[i : i + chunk_samples] for i in range(0, len(audio), chunk_samples)]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def transcribe_chunk(chunk):
|
| 44 |
+
"""Transcribe a single audio chunk."""
|
| 45 |
+
inputs = processor(chunk, sampling_rate=SAMPLE_RATE, return_tensors="pt")
|
| 46 |
+
input_features = inputs.input_features.to(DEVICE)
|
| 47 |
+
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
predicted_ids = finetuned_model.generate(input_features)
|
| 50 |
+
|
| 51 |
+
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def transcribe_audio(audio_path: str) -> str:
|
| 55 |
+
"""Transcribe the given audio file using the specified Whisper model."""
|
| 56 |
+
audio = load_audio(audio_path)
|
| 57 |
+
audio_chunks = chunk_audio(audio)
|
| 58 |
+
transcriptions = [transcribe_chunk(chunk) for chunk in audio_chunks]
|
| 59 |
+
return " ".join(transcriptions)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
examples = [["apollo11_example.mp3"], ["mock_operator_example.wav"]]
|
| 63 |
|
| 64 |
ui = gr.Interface(
|
| 65 |
+
fn=transcribe_audio,
|
| 66 |
inputs=gr.Audio(
|
| 67 |
sources=["microphone", "upload"],
|
| 68 |
type="filepath",
|
|
|
|
| 72 |
label="Transcription",
|
| 73 |
placeholder="The transcribed text will appear here...",
|
| 74 |
),
|
| 75 |
+
title="ECHO V0.1",
|
| 76 |
description="""
|
| 77 |
+
This is a demo of the transcription capabilities of "ECHO". This could be adapted to run real-time transcription on a live audio stream like ISS communications.
|
| 78 |
|
| 79 |
### How to use:
|
| 80 |
+
1. **Record or Upload**: Click on the microphone icon 🎙️ to record audio, using your microphone, or click on the upload button ⬆️ to upload an audio file.
|
| 81 |
You can also use the **Examples** provided below, as inputs, by clicking on them.
|
| 82 |
2. **Click Submit**: Clicking the submit button will transcribe the audio.
|
| 83 |
3. **Read the Transcription**: The transcribed text will appear in the text box below the audio input section.
|
|
|
|
| 85 |
examples=examples,
|
| 86 |
)
|
| 87 |
|
| 88 |
+
ui.launch(share=False)
|
checkpoint-60/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: openai/whisper-small.en
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.11.1
|
checkpoint-60/adapter_config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": {
|
| 4 |
+
"base_model_class": "WhisperForConditionalGeneration",
|
| 5 |
+
"parent_library": "transformers.models.whisper.modeling_whisper"
|
| 6 |
+
},
|
| 7 |
+
"base_model_name_or_path": "openai/whisper-small.en",
|
| 8 |
+
"bias": "none",
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 64,
|
| 17 |
+
"lora_dropout": 0.05,
|
| 18 |
+
"megatron_config": null,
|
| 19 |
+
"megatron_core": "megatron.core",
|
| 20 |
+
"modules_to_save": null,
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"q_proj",
|
| 27 |
+
"v_proj"
|
| 28 |
+
],
|
| 29 |
+
"task_type": null,
|
| 30 |
+
"use_dora": false,
|
| 31 |
+
"use_rslora": false
|
| 32 |
+
}
|
checkpoint-60/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b15e3353f37af4d1d7ea1e44c080cec9113f64cb7c6a493493c4c58d2bc1727
|
| 3 |
+
size 14176064
|
checkpoint-60/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbd9b9489f49bc8b005817941551fb0de48c78b22311090f390a56d914770267
|
| 3 |
+
size 28432570
|
checkpoint-60/preprocessor_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chunk_length": 30,
|
| 3 |
+
"feature_extractor_type": "WhisperFeatureExtractor",
|
| 4 |
+
"feature_size": 80,
|
| 5 |
+
"hop_length": 160,
|
| 6 |
+
"n_fft": 400,
|
| 7 |
+
"n_samples": 480000,
|
| 8 |
+
"nb_max_frames": 3000,
|
| 9 |
+
"padding_side": "right",
|
| 10 |
+
"padding_value": 0.0,
|
| 11 |
+
"processor_class": "WhisperProcessor",
|
| 12 |
+
"return_attention_mask": false,
|
| 13 |
+
"sampling_rate": 16000
|
| 14 |
+
}
|
checkpoint-60/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70af4d9ff66efb9b200a49233a3dcb06212cd5c42860c820af8b3b0f975f616d
|
| 3 |
+
size 14244
|
checkpoint-60/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6574cff4022f3e678230ab559d2aabe9a67f1acea6716a875a3ad2c85bea47c
|
| 3 |
+
size 1064
|
checkpoint-60/trainer_state.json
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 5.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 60,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0,
|
| 13 |
+
"eval_loss": 2.356511354446411,
|
| 14 |
+
"eval_runtime": 27.7264,
|
| 15 |
+
"eval_samples_per_second": 15.4,
|
| 16 |
+
"eval_steps_per_second": 0.252,
|
| 17 |
+
"eval_wer": 22.12566844919786,
|
| 18 |
+
"step": 0
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"epoch": 1.0,
|
| 22 |
+
"grad_norm": 0.6522291302680969,
|
| 23 |
+
"learning_rate": 0.0008,
|
| 24 |
+
"loss": 0.8625,
|
| 25 |
+
"step": 12
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 1.0,
|
| 29 |
+
"eval_loss": 0.45175907015800476,
|
| 30 |
+
"eval_runtime": 27.2705,
|
| 31 |
+
"eval_samples_per_second": 15.658,
|
| 32 |
+
"eval_steps_per_second": 0.257,
|
| 33 |
+
"eval_wer": 17.290552584670234,
|
| 34 |
+
"step": 12
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"epoch": 2.0,
|
| 38 |
+
"grad_norm": 0.39275336265563965,
|
| 39 |
+
"learning_rate": 0.0006,
|
| 40 |
+
"loss": 0.2741,
|
| 41 |
+
"step": 24
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 2.0,
|
| 45 |
+
"eval_loss": 0.4212001860141754,
|
| 46 |
+
"eval_runtime": 27.8396,
|
| 47 |
+
"eval_samples_per_second": 15.338,
|
| 48 |
+
"eval_steps_per_second": 0.251,
|
| 49 |
+
"eval_wer": 18.137254901960784,
|
| 50 |
+
"step": 24
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 3.0,
|
| 54 |
+
"grad_norm": 0.35100314021110535,
|
| 55 |
+
"learning_rate": 0.0004,
|
| 56 |
+
"loss": 0.1835,
|
| 57 |
+
"step": 36
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 3.0,
|
| 61 |
+
"eval_loss": 0.4116327464580536,
|
| 62 |
+
"eval_runtime": 27.3845,
|
| 63 |
+
"eval_samples_per_second": 15.593,
|
| 64 |
+
"eval_steps_per_second": 0.256,
|
| 65 |
+
"eval_wer": 17.446524064171122,
|
| 66 |
+
"step": 36
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 4.0,
|
| 70 |
+
"grad_norm": 0.23920069634914398,
|
| 71 |
+
"learning_rate": 0.0002,
|
| 72 |
+
"loss": 0.1354,
|
| 73 |
+
"step": 48
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 4.0,
|
| 77 |
+
"eval_loss": 0.41445085406303406,
|
| 78 |
+
"eval_runtime": 27.6194,
|
| 79 |
+
"eval_samples_per_second": 15.46,
|
| 80 |
+
"eval_steps_per_second": 0.253,
|
| 81 |
+
"eval_wer": 18.070409982174688,
|
| 82 |
+
"step": 48
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 5.0,
|
| 86 |
+
"grad_norm": 0.18301299214363098,
|
| 87 |
+
"learning_rate": 0.0,
|
| 88 |
+
"loss": 0.1074,
|
| 89 |
+
"step": 60
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 5.0,
|
| 93 |
+
"eval_loss": 0.41686326265335083,
|
| 94 |
+
"eval_runtime": 27.6106,
|
| 95 |
+
"eval_samples_per_second": 15.465,
|
| 96 |
+
"eval_steps_per_second": 0.254,
|
| 97 |
+
"eval_wer": 17.713903743315505,
|
| 98 |
+
"step": 60
|
| 99 |
+
}
|
| 100 |
+
],
|
| 101 |
+
"logging_steps": 500,
|
| 102 |
+
"max_steps": 60,
|
| 103 |
+
"num_input_tokens_seen": 0,
|
| 104 |
+
"num_train_epochs": 5,
|
| 105 |
+
"save_steps": 500,
|
| 106 |
+
"stateful_callbacks": {
|
| 107 |
+
"TrainerControl": {
|
| 108 |
+
"args": {
|
| 109 |
+
"should_epoch_stop": false,
|
| 110 |
+
"should_evaluate": false,
|
| 111 |
+
"should_log": false,
|
| 112 |
+
"should_save": true,
|
| 113 |
+
"should_training_stop": true
|
| 114 |
+
},
|
| 115 |
+
"attributes": {}
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"total_flos": 1.1145212153856e+18,
|
| 119 |
+
"train_batch_size": 64,
|
| 120 |
+
"trial_name": null,
|
| 121 |
+
"trial_params": null
|
| 122 |
+
}
|
checkpoint-60/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2adcdff3799c0e56a840f3713150b8368783a95ba20e632256f7506c42c60001
|
| 3 |
+
size 5240
|