Spaces:
Sleeping
Sleeping
ddovidovich
commited on
Commit
·
bea368c
1
Parent(s):
69d4a53
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,8 @@ import pandas as pd
|
|
5 |
import numpy as np
|
6 |
from tqdm.auto import tqdm
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
-
#from transformers import AutoTokenizer, AutoModel
|
9 |
import torch
|
10 |
|
11 |
-
dataList = [
|
12 |
-
{"Answer": "", "Distance": 0},
|
13 |
-
{"Answer": "", "Distance": 0},
|
14 |
-
{"Answer": "", "Distance": 0}
|
15 |
-
]
|
16 |
def list_to_numpy(obj):
|
17 |
if isinstance(obj, list):
|
18 |
return np.array(obj)
|
@@ -27,9 +21,6 @@ def load_documents_from_jsonl(embeddings_model, jsonl_path, createEmbeddings=Fal
|
|
27 |
def generate_embeddings(tokenizer, model, text):
|
28 |
with torch.no_grad():
|
29 |
embeddings = model.encode(text, convert_to_tensor=True)
|
30 |
-
# encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
31 |
-
# with torch.no_grad():
|
32 |
-
# embeddings = model(**encoded_input)
|
33 |
return embeddings.cpu().numpy()
|
34 |
|
35 |
def save_to_faiss(df):
|
@@ -57,8 +48,6 @@ def main():
|
|
57 |
st.title("Demo for LLAMA-2 RAG with CPU only")
|
58 |
|
59 |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
60 |
-
#tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
61 |
-
#model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
62 |
|
63 |
df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)
|
64 |
save_to_faiss(df_qa)
|
@@ -66,10 +55,15 @@ def main():
|
|
66 |
# Текстовое поле для ввода вопроса
|
67 |
input_text = st.text_input("Input", "")
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
# Кнопка "Answer"
|
70 |
if st.button("Answer"):
|
71 |
query_vector = model.encode(input_text.lower())
|
72 |
-
dataList = search_in_faiss(query_vector,
|
73 |
pass
|
74 |
|
75 |
# Таблица с данными
|
|
|
5 |
import numpy as np
|
6 |
from tqdm.auto import tqdm
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
8 |
import torch
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
def list_to_numpy(obj):
|
11 |
if isinstance(obj, list):
|
12 |
return np.array(obj)
|
|
|
21 |
def generate_embeddings(tokenizer, model, text):
|
22 |
with torch.no_grad():
|
23 |
embeddings = model.encode(text, convert_to_tensor=True)
|
|
|
|
|
|
|
24 |
return embeddings.cpu().numpy()
|
25 |
|
26 |
def save_to_faiss(df):
|
|
|
48 |
st.title("Demo for LLAMA-2 RAG with CPU only")
|
49 |
|
50 |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
|
|
|
|
51 |
|
52 |
df_qa = load_documents_from_jsonl(model, 'ExportForAI1.jsonl', False)
|
53 |
save_to_faiss(df_qa)
|
|
|
55 |
# Текстовое поле для ввода вопроса
|
56 |
input_text = st.text_input("Input", "")
|
57 |
|
58 |
+
dataList = [
|
59 |
+
{"Answer": "", "Distance": 0},
|
60 |
+
{"Answer": "", "Distance": 0},
|
61 |
+
{"Answer": "", "Distance": 0}
|
62 |
+
]
|
63 |
# Кнопка "Answer"
|
64 |
if st.button("Answer"):
|
65 |
query_vector = model.encode(input_text.lower())
|
66 |
+
dataList = search_in_faiss(query_vector, df_qa, k=3)
|
67 |
pass
|
68 |
|
69 |
# Таблица с данными
|