Spaces:
Runtime error
Runtime error
import gplace | |
from typing import TypedDict, Optional | |
from langchain_google_community import GoogleSearchAPIWrapper | |
import utils | |
## Document vector store for context | |
from langchain_chroma import Chroma | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.document_loaders import CSVLoader | |
from langchain_openai import OpenAIEmbeddings | |
import glob | |
utils.load_env() | |
search = GoogleSearchAPIWrapper() | |
class NearbySearchInput(TypedDict): | |
keyword: str | |
location_name: str | |
radius: int | |
place_type: Optional[str] | |
class NearbyDenseCommunityInput(TypedDict): | |
location_name: str | |
radius: int | |
class GoogleSearchInput(TypedDict): | |
keyword: str | |
# %% | |
def find_place_from_text(location:str): | |
"""Finds a place and related data from the query text""" | |
result = gplace.find_place_from_text(location) | |
r = result['candidates'][0] | |
return f""" | |
address: {r['formatted_address']}\n | |
location: {r['geometry']['location']}\n | |
location_name: {r['name']}\n | |
""" | |
# return f""" | |
# address: {r['formatted_address']}\n | |
# location: {r['geometry']['location']}\n | |
# location_name: {r['name']}\n | |
# """ | |
# def nearby_search(keyword:str, location:str, radius=2000, place_type=None): | |
# """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location""" | |
# location = gplace.find_location(location, radius=radius) | |
# result = gplace.nearby_search(keyword, location, radius) | |
# strout = "" | |
# for r in result: | |
# strout = strout + f""" | |
# address: {r['vicinity']}\n | |
# location: {r['geometry']['location']}\n | |
# name: {r['name']}\n | |
# opening hours: {r['opening_hours']}\n | |
# rating: {r['rating']}\n | |
# plus code: {r['plus_code']['global_code']}\n\n | |
# """ | |
# return strout | |
def nearby_search(input_dict: NearbySearchInput): | |
"""Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location.""" | |
max_results = 10 | |
keyword = input_dict['keyword'] | |
location = input_dict['location_name'] | |
radius = input_dict.get('radius', 2000) | |
place_type = input_dict.get('place_type', None) | |
# Call the internal function to find location | |
location_coords = gplace.find_location(location, radius=radius) | |
result = gplace.nearby_search(keyword, location_coords, radius) | |
number_results = len(result) | |
strout = "number of results more than {}\n".format(number_results) if number_results==60 else "number of results: {}\n".format(number_results) | |
for r in result[:max_results]: | |
# Use .get() to handle missing keys | |
address = r.get('vicinity', 'N/A') | |
location_info = r.get('geometry', {}).get('location', 'N/A') | |
name = r.get('name', 'N/A') | |
opening_hours = r.get('opening_hours', 'N/A') | |
rating = r.get('rating', 'N/A') | |
plus_code = r.get('plus_code', {}).get('global_code', 'N/A') | |
# strout += f""" | |
# address: {address}\n | |
# location: {location_info}\n | |
# lacation_name: {name}\n | |
# opening hours: {opening_hours}\n | |
# rating: {rating}\n | |
# plus code: {plus_code}\n\n | |
# """ | |
strout += f""" | |
**{name}**\n | |
address: {address}\n | |
rating: {rating}\n\n | |
""" | |
return strout | |
def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str: | |
""" getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters) | |
return list of location community nearby, name, community type. | |
""" | |
location = input_dict['location_name'] | |
radius = input_dict['radius'] | |
location_coords = gplace.find_location(location, radius=radius) | |
result = gplace.nearby_dense_community(location_coords, radius) | |
strout = "" | |
for r in result: | |
# Use .get() to handle missing keys | |
address = r.get('vicinity', 'N/A') | |
location_types = r.get('types', 'N/A') | |
name = r.get('name', 'N/A') | |
opening_hours = r.get('opening_hours', 'N/A') | |
rating = r.get('rating', 'N/A') | |
plus_code = r.get('plus_code', {}).get('global_code', 'N/A') | |
strout += f""" | |
name: {name}\n | |
types: {location_types}\n | |
""" | |
return strout | |
def google_search(input_dict: GoogleSearchInput): | |
"""Search Google for recent results.""" | |
return search.run(input_dict['keyword']) | |
## Document csv | |
def get_documents(file_pattern="document/*.csv"): | |
file_paths = tuple(glob.glob(file_pattern)) | |
all_docs = [] | |
for file_path in file_paths: | |
loader = CSVLoader(file_path=file_path) | |
docs = loader.load() | |
all_docs.extend(docs) # Add the documents to the list | |
return all_docs | |
def get_retriver_from_docs(docs): | |
# Split text into chunks separated. | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
splits = text_splitter.split_documents(docs) | |
# Text Vectorization. | |
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) | |
# Retrieve and generate using the relevant snippets of the blog. | |
retriever = vectorstore.as_retriever() | |
return retriever | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_core.tools import tool | |
docs = get_documents() | |
retriever = get_retriver_from_docs(docs) | |
population_doc_retriever = create_retriever_tool( | |
retriever, | |
"search_population_community_household_expenditures_data", | |
"Use this tool to retrieve information about population, community and household expenditures. by searching distinct or province" | |
) | |
google_search = tool(google_search) | |
find_place_from_text = tool(find_place_from_text) | |
nearby_search = tool(nearby_search) | |
nearby_dense_community = tool(nearby_dense_community) |