Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
# app.py — Thai Sentiment (WangchanBERTa Variants)
|
| 2 |
# - No Single tab
|
| 3 |
# - No aspect analysis (focus on POS/NEG)
|
| 4 |
-
# - CSV tab: date pickers appear ONLY if a date column exists
|
| 5 |
# - Predict buttons right below inputs
|
| 6 |
-
import os, json, importlib.util, traceback, re, math, tempfile
|
| 7 |
import gradio as gr
|
| 8 |
import torch, pandas as pd
|
| 9 |
import torch.nn.functional as F
|
|
@@ -86,6 +86,19 @@ def _format_pct(x: float) -> str:
|
|
| 86 |
def _to_datetime_safe(s):
|
| 87 |
return pd.to_datetime(s, errors="coerce", infer_datetime_format=True, utc=False)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
LIKELY_TEXT_COLS = ["text","review","message","comment","content","sentence","body","ข้อความ","รีวิว"]
|
| 90 |
LIKELY_DATE_COLS = ["date","created_at","time","timestamp","datetime","วันที่","วันเวลา","เวลา"]
|
| 91 |
|
|
@@ -107,11 +120,9 @@ def detect_text_and_date_cols(df: pd.DataFrame):
|
|
| 107 |
if c.lower() in LIKELY_DATE_COLS:
|
| 108 |
date_candidates.append(c)
|
| 109 |
continue
|
| 110 |
-
# try parse sample
|
| 111 |
sample = df[c].head(50)
|
| 112 |
if _to_datetime_safe(sample).notna().sum() >= max(3, int(len(sample)*0.2)):
|
| 113 |
date_candidates.append(c)
|
| 114 |
-
|
| 115 |
date_candidates = list(dict.fromkeys(date_candidates))
|
| 116 |
date_col = date_candidates[0] if len(date_candidates)>0 else None
|
| 117 |
return text_col, date_candidates, date_col
|
|
@@ -223,7 +234,6 @@ def on_file_change(file_obj):
|
|
| 223 |
- toggle visibility ของ date controls + line chart placeholder
|
| 224 |
"""
|
| 225 |
if file_obj is None:
|
| 226 |
-
# reset UI
|
| 227 |
return (
|
| 228 |
gr.update(choices=[], value=None), # text_dd
|
| 229 |
gr.update(choices=[], value=None), # date_dd
|
|
@@ -240,7 +250,6 @@ def on_file_change(file_obj):
|
|
| 240 |
cols = list(df_raw.columns)
|
| 241 |
text_col, date_candidates, date_col = detect_text_and_date_cols(df_raw)
|
| 242 |
|
| 243 |
-
# show/hide date controls
|
| 244 |
has_date = date_col is not None
|
| 245 |
note = "Detected text column: **{}**".format(text_col)
|
| 246 |
if has_date:
|
|
@@ -273,7 +282,7 @@ def on_file_change(file_obj):
|
|
| 273 |
|
| 274 |
# ================= CSV Predict =================
|
| 275 |
def predict_csv(file_obj, model_choice: str, text_col_name: str,
|
| 276 |
-
date_col_name: str, date_from
|
| 277 |
freq_choice: str, use_ma: bool):
|
| 278 |
|
| 279 |
try:
|
|
@@ -281,8 +290,8 @@ def predict_csv(file_obj, model_choice: str, text_col_name: str,
|
|
| 281 |
return pd.DataFrame(), go.Figure(), go.Figure(), gr.update(visible=False, value=go.Figure()), "Please upload a CSV.", None
|
| 282 |
|
| 283 |
df_raw = pd.read_csv(file_obj.name)
|
| 284 |
-
|
| 285 |
cols = list(df_raw.columns)
|
|
|
|
| 286 |
col_text = text_col_name if text_col_name in cols else detect_text_and_date_cols(df_raw)[0]
|
| 287 |
|
| 288 |
texts = [_norm_text(v) for v in df_raw[col_text].tolist()]
|
|
@@ -306,11 +315,16 @@ def predict_csv(file_obj, model_choice: str, text_col_name: str,
|
|
| 306 |
df_time = out_df.copy()
|
| 307 |
df_time["__dt__"] = dts
|
| 308 |
df_time = df_time.dropna(subset=["__dt__"])
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
if len(df_time) > 0:
|
| 315 |
fig_line = make_time_chart(df_time, "__dt__", freq_choice, use_ma)
|
| 316 |
show_time = True
|
|
@@ -350,7 +364,6 @@ with gr.Blocks(title="Thai Sentiment (WangchanBERTa Variants)") as demo:
|
|
| 350 |
bar2 = gr.Plot(label="Label counts (bar)")
|
| 351 |
pie2 = gr.Plot(label="Positive vs Negative (pie)")
|
| 352 |
sum2 = gr.Markdown()
|
| 353 |
-
|
| 354 |
btn_batch.click(predict_many, [t2, model_radio], [df2, bar2, pie2, sum2])
|
| 355 |
|
| 356 |
# ---- CSV Upload ----
|
|
@@ -360,8 +373,9 @@ with gr.Blocks(title="Thai Sentiment (WangchanBERTa Variants)") as demo:
|
|
| 360 |
text_dd = gr.Dropdown(label="คอ���ัมน์ข้อความ", choices=[], value=None)
|
| 361 |
date_dd = gr.Dropdown(label="คอลัมน์วันเวลา (ถ้ามี)", choices=[], value=None)
|
| 362 |
with gr.Row():
|
| 363 |
-
|
| 364 |
-
|
|
|
|
| 365 |
freq = gr.Radio(choices=["D","W","M"], value="D", label="ความถี่ (Day/Week/Month)", visible=False)
|
| 366 |
use_ma = gr.Checkbox(value=True, label="Moving average (7/4/3)", visible=False)
|
| 367 |
|
|
@@ -375,13 +389,11 @@ with gr.Blocks(title="Thai Sentiment (WangchanBERTa Variants)") as demo:
|
|
| 375 |
sum3 = gr.Markdown()
|
| 376 |
dl3 = gr.File(label="ดาวน์โหลดผลเป็น CSV", interactive=False)
|
| 377 |
|
| 378 |
-
# เมื่ออัปโหลดไฟล์ → เติม dropdowns + toggle date controls + เคลียร์ผลลัพธ์เก่า
|
| 379 |
file_in.change(
|
| 380 |
on_file_change, [file_in],
|
| 381 |
[text_dd, date_dd, date_from, date_to, freq, use_ma, line, note_detect]
|
| 382 |
)
|
| 383 |
|
| 384 |
-
# ปุ่ม predict CSV อยู่ใต้ตัวกรอง (ใกล้มือ)
|
| 385 |
btn_csv.click(
|
| 386 |
predict_csv,
|
| 387 |
[file_in, model_radio, text_dd, date_dd, date_from, date_to, freq, use_ma],
|
|
|
|
| 1 |
# app.py — Thai Sentiment (WangchanBERTa Variants)
|
| 2 |
# - No Single tab
|
| 3 |
# - No aspect analysis (focus on POS/NEG)
|
| 4 |
+
# - CSV tab: date pickers appear ONLY if a date column exists (use DatePicker)
|
| 5 |
# - Predict buttons right below inputs
|
| 6 |
+
import os, json, importlib.util, traceback, re, math, tempfile, datetime
|
| 7 |
import gradio as gr
|
| 8 |
import torch, pandas as pd
|
| 9 |
import torch.nn.functional as F
|
|
|
|
| 86 |
def _to_datetime_safe(s):
|
| 87 |
return pd.to_datetime(s, errors="coerce", infer_datetime_format=True, utc=False)
|
| 88 |
|
| 89 |
+
def _normalize_datepicker_value(v):
|
| 90 |
+
"""รับค่าจาก gr.DatePicker (datetime.date หรือ str หรือ None) → pandas.Timestamp หรือ None"""
|
| 91 |
+
if v is None or (isinstance(v, float) and math.isnan(v)):
|
| 92 |
+
return None
|
| 93 |
+
if isinstance(v, datetime.date):
|
| 94 |
+
return pd.Timestamp(v)
|
| 95 |
+
# เผื่อบางเวอร์ชันส่ง str 'YYYY-MM-DD'
|
| 96 |
+
try:
|
| 97 |
+
ts = pd.to_datetime(v, errors="coerce")
|
| 98 |
+
return ts if pd.notna(ts) else None
|
| 99 |
+
except Exception:
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
LIKELY_TEXT_COLS = ["text","review","message","comment","content","sentence","body","ข้อความ","รีวิว"]
|
| 103 |
LIKELY_DATE_COLS = ["date","created_at","time","timestamp","datetime","วันที่","วันเวลา","เวลา"]
|
| 104 |
|
|
|
|
| 120 |
if c.lower() in LIKELY_DATE_COLS:
|
| 121 |
date_candidates.append(c)
|
| 122 |
continue
|
|
|
|
| 123 |
sample = df[c].head(50)
|
| 124 |
if _to_datetime_safe(sample).notna().sum() >= max(3, int(len(sample)*0.2)):
|
| 125 |
date_candidates.append(c)
|
|
|
|
| 126 |
date_candidates = list(dict.fromkeys(date_candidates))
|
| 127 |
date_col = date_candidates[0] if len(date_candidates)>0 else None
|
| 128 |
return text_col, date_candidates, date_col
|
|
|
|
| 234 |
- toggle visibility ของ date controls + line chart placeholder
|
| 235 |
"""
|
| 236 |
if file_obj is None:
|
|
|
|
| 237 |
return (
|
| 238 |
gr.update(choices=[], value=None), # text_dd
|
| 239 |
gr.update(choices=[], value=None), # date_dd
|
|
|
|
| 250 |
cols = list(df_raw.columns)
|
| 251 |
text_col, date_candidates, date_col = detect_text_and_date_cols(df_raw)
|
| 252 |
|
|
|
|
| 253 |
has_date = date_col is not None
|
| 254 |
note = "Detected text column: **{}**".format(text_col)
|
| 255 |
if has_date:
|
|
|
|
| 282 |
|
| 283 |
# ================= CSV Predict =================
|
| 284 |
def predict_csv(file_obj, model_choice: str, text_col_name: str,
|
| 285 |
+
date_col_name: str, date_from, date_to,
|
| 286 |
freq_choice: str, use_ma: bool):
|
| 287 |
|
| 288 |
try:
|
|
|
|
| 290 |
return pd.DataFrame(), go.Figure(), go.Figure(), gr.update(visible=False, value=go.Figure()), "Please upload a CSV.", None
|
| 291 |
|
| 292 |
df_raw = pd.read_csv(file_obj.name)
|
|
|
|
| 293 |
cols = list(df_raw.columns)
|
| 294 |
+
|
| 295 |
col_text = text_col_name if text_col_name in cols else detect_text_and_date_cols(df_raw)[0]
|
| 296 |
|
| 297 |
texts = [_norm_text(v) for v in df_raw[col_text].tolist()]
|
|
|
|
| 315 |
df_time = out_df.copy()
|
| 316 |
df_time["__dt__"] = dts
|
| 317 |
df_time = df_time.dropna(subset=["__dt__"])
|
| 318 |
+
|
| 319 |
+
# normalize datepicker values
|
| 320 |
+
start_ts = _normalize_datepicker_value(date_from)
|
| 321 |
+
end_ts = _normalize_datepicker_value(date_to)
|
| 322 |
+
|
| 323 |
+
if start_ts is not None:
|
| 324 |
+
df_time = df_time[df_time["__dt__"] >= start_ts]
|
| 325 |
+
if end_ts is not None:
|
| 326 |
+
df_time = df_time[df_time["__dt__"] <= end_ts]
|
| 327 |
+
|
| 328 |
if len(df_time) > 0:
|
| 329 |
fig_line = make_time_chart(df_time, "__dt__", freq_choice, use_ma)
|
| 330 |
show_time = True
|
|
|
|
| 364 |
bar2 = gr.Plot(label="Label counts (bar)")
|
| 365 |
pie2 = gr.Plot(label="Positive vs Negative (pie)")
|
| 366 |
sum2 = gr.Markdown()
|
|
|
|
| 367 |
btn_batch.click(predict_many, [t2, model_radio], [df2, bar2, pie2, sum2])
|
| 368 |
|
| 369 |
# ---- CSV Upload ----
|
|
|
|
| 373 |
text_dd = gr.Dropdown(label="คอ���ัมน์ข้อความ", choices=[], value=None)
|
| 374 |
date_dd = gr.Dropdown(label="คอลัมน์วันเวลา (ถ้ามี)", choices=[], value=None)
|
| 375 |
with gr.Row():
|
| 376 |
+
# ใช้ DatePicker แทน Date (รองรับ gradio เวอร์ชันที่ไม่เคยมี gr.Date)
|
| 377 |
+
date_from = gr.DatePicker(label="เริ่มวันที่", visible=False)
|
| 378 |
+
date_to = gr.DatePicker(label="ถึงวันที่", visible=False)
|
| 379 |
freq = gr.Radio(choices=["D","W","M"], value="D", label="ความถี่ (Day/Week/Month)", visible=False)
|
| 380 |
use_ma = gr.Checkbox(value=True, label="Moving average (7/4/3)", visible=False)
|
| 381 |
|
|
|
|
| 389 |
sum3 = gr.Markdown()
|
| 390 |
dl3 = gr.File(label="ดาวน์โหลดผลเป็น CSV", interactive=False)
|
| 391 |
|
|
|
|
| 392 |
file_in.change(
|
| 393 |
on_file_change, [file_in],
|
| 394 |
[text_dd, date_dd, date_from, date_to, freq, use_ma, line, note_detect]
|
| 395 |
)
|
| 396 |
|
|
|
|
| 397 |
btn_csv.click(
|
| 398 |
predict_csv,
|
| 399 |
[file_in, model_radio, text_dd, date_dd, date_from, date_to, freq, use_ma],
|