Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,31 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
MODEL_NAME = "facebook/rag-sequence-nq"
|
| 7 |
DATASET_NAME = "username/mealplan-chunks"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
tokenizer = RagTokenizer.from_pretrained(MODEL_NAME)
|
| 11 |
-
|
| 12 |
-
MODEL_NAME,
|
| 13 |
-
index_name="exact",
|
| 14 |
-
use_dummy_dataset=False,
|
| 15 |
-
dataset_name=DATASET_NAME
|
| 16 |
-
)
|
| 17 |
-
model = RagSequenceForGeneration.from_pretrained(MODEL_NAME, retriever=retriever)
|
| 18 |
|
| 19 |
-
# βββ Core chat callback βββ
|
| 20 |
@spaces.GPU
|
| 21 |
def respond(
|
| 22 |
message: str,
|
|
@@ -27,38 +36,45 @@ def respond(
|
|
| 27 |
avoid: str,
|
| 28 |
weeks: str,
|
| 29 |
):
|
| 30 |
-
#
|
| 31 |
avoid_list = [a.strip() for a in avoid.split(",") if a.strip()]
|
| 32 |
-
# build prefs string
|
| 33 |
prefs = (
|
| 34 |
-
f"Goal={goal}; "
|
| 35 |
-
f"
|
| 36 |
-
f"Meals={meals}/day; "
|
| 37 |
-
f"Avoid={','.join(avoid_list)}; "
|
| 38 |
-
f"Duration={weeks}"
|
| 39 |
)
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
prompt = (
|
| 42 |
"SYSTEM: Only answer using the provided CONTEXT. "
|
| 43 |
-
"If itβs not there, say
|
| 44 |
f"PREFS: {prefs}\n"
|
|
|
|
| 45 |
f"Q: {message}\n"
|
| 46 |
)
|
| 47 |
-
|
|
|
|
| 48 |
inputs = tokenizer([prompt], return_tensors="pt")
|
| 49 |
outputs = model.generate(**inputs, num_beams=2, max_new_tokens=200)
|
| 50 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 51 |
|
|
|
|
| 52 |
history = history or []
|
| 53 |
history.append((message, answer))
|
| 54 |
return history
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
# preference controls
|
| 58 |
goal = gr.Dropdown(["Lose weight","Bulk","Maintain"], value="Lose weight", label="Goal")
|
| 59 |
diet = gr.CheckboxGroup(["Omnivore","Vegetarian","Vegan","Keto","Paleo","Low-Carb"], label="Diet Style")
|
| 60 |
-
meals = gr.Slider(1,
|
| 61 |
-
avoid = gr.Textbox(placeholder="e.g. Gluten, Dairy, Nuts
|
| 62 |
weeks = gr.Dropdown(["1 week","2 weeks","3 weeks","4 weeks"], value="1 week", label="Plan Length")
|
| 63 |
|
| 64 |
demo = gr.ChatInterface(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
import faiss
|
| 4 |
+
import numpy as np
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from transformers import RagTokenizer, RagSequenceForGeneration
|
| 8 |
|
| 9 |
+
# β Config β
|
|
|
|
| 10 |
DATASET_NAME = "username/mealplan-chunks"
|
| 11 |
+
INDEX_PATH = "mealplan.index"
|
| 12 |
+
MODEL_NAME = "facebook/rag-sequence-nq"
|
| 13 |
+
|
| 14 |
+
# β Load chunks & FAISS index β
|
| 15 |
+
ds = load_dataset(DATASET_NAME, split="train")
|
| 16 |
+
texts = ds["text"]
|
| 17 |
+
sources = ds["source"]
|
| 18 |
+
pages = ds["page"]
|
| 19 |
+
|
| 20 |
+
# β Embeddings embedder & FAISS β
|
| 21 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 22 |
+
chunk_embeddings = embedder.encode(texts, convert_to_numpy=True)
|
| 23 |
+
index = faiss.read_index(INDEX_PATH)
|
| 24 |
|
| 25 |
+
# β RAG generator β
|
| 26 |
tokenizer = RagTokenizer.from_pretrained(MODEL_NAME)
|
| 27 |
+
model = RagSequenceForGeneration.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
|
|
|
| 29 |
@spaces.GPU
|
| 30 |
def respond(
|
| 31 |
message: str,
|
|
|
|
| 36 |
avoid: str,
|
| 37 |
weeks: str,
|
| 38 |
):
|
| 39 |
+
# Parse preferences
|
| 40 |
avoid_list = [a.strip() for a in avoid.split(",") if a.strip()]
|
|
|
|
| 41 |
prefs = (
|
| 42 |
+
f"Goal={goal}; Diet={','.join(diet)}; "
|
| 43 |
+
f"Meals={meals}/day; Avoid={','.join(avoid_list)}; Duration={weeks}"
|
|
|
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
+
|
| 46 |
+
# 1) Query embedding & FAISS search
|
| 47 |
+
q_emb = embedder.encode([message], convert_to_numpy=True)
|
| 48 |
+
D, I = index.search(q_emb, 5) # top-5
|
| 49 |
+
ctx_chunks = [
|
| 50 |
+
f"[{sources[i]} p{pages[i]}] {texts[i]}" for i in I[0]
|
| 51 |
+
]
|
| 52 |
+
context = "\n".join(ctx_chunks)
|
| 53 |
+
|
| 54 |
+
# 2) Build prompt
|
| 55 |
prompt = (
|
| 56 |
"SYSTEM: Only answer using the provided CONTEXT. "
|
| 57 |
+
"If itβs not there, say \"I'm sorry, I don't know.\"\n"
|
| 58 |
f"PREFS: {prefs}\n"
|
| 59 |
+
f"CONTEXT:\n{context}\n"
|
| 60 |
f"Q: {message}\n"
|
| 61 |
)
|
| 62 |
+
|
| 63 |
+
# 3) Generate
|
| 64 |
inputs = tokenizer([prompt], return_tensors="pt")
|
| 65 |
outputs = model.generate(**inputs, num_beams=2, max_new_tokens=200)
|
| 66 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 67 |
|
| 68 |
+
# 4) Update history
|
| 69 |
history = history or []
|
| 70 |
history.append((message, answer))
|
| 71 |
return history
|
| 72 |
|
| 73 |
+
# β Build Gradio chat interface β
|
|
|
|
| 74 |
goal = gr.Dropdown(["Lose weight","Bulk","Maintain"], value="Lose weight", label="Goal")
|
| 75 |
diet = gr.CheckboxGroup(["Omnivore","Vegetarian","Vegan","Keto","Paleo","Low-Carb"], label="Diet Style")
|
| 76 |
+
meals = gr.Slider(1,6,value=3,step=1,label="Meals per day")
|
| 77 |
+
avoid = gr.Textbox(placeholder="e.g. Gluten, Dairy, Nuts...", label="Avoidances (comma-separated)")
|
| 78 |
weeks = gr.Dropdown(["1 week","2 weeks","3 weeks","4 weeks"], value="1 week", label="Plan Length")
|
| 79 |
|
| 80 |
demo = gr.ChatInterface(
|