Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,17 @@ from langchain_community.document_loaders import (
|
|
| 14 |
from datetime import datetime
|
| 15 |
import pytz
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
class DocumentRAG:
|
| 19 |
def __init__(self):
|
| 20 |
self.document_store = None
|
|
@@ -28,6 +38,10 @@ class DocumentRAG:
|
|
| 28 |
if not self.api_key:
|
| 29 |
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def process_documents(self, uploaded_files):
|
| 32 |
"""Process uploaded files by saving them temporarily and extracting content."""
|
| 33 |
if not self.api_key:
|
|
@@ -51,14 +65,13 @@ class DocumentRAG:
|
|
| 51 |
elif temp_file_path.endswith('.csv'):
|
| 52 |
loader = CSVLoader(temp_file_path)
|
| 53 |
else:
|
| 54 |
-
|
| 55 |
|
| 56 |
# Load the documents
|
| 57 |
try:
|
| 58 |
documents.extend(loader.load())
|
| 59 |
except Exception as e:
|
| 60 |
-
|
| 61 |
-
continue
|
| 62 |
|
| 63 |
if not documents:
|
| 64 |
return "No valid documents were processed. Please check your files."
|
|
@@ -77,7 +90,12 @@ class DocumentRAG:
|
|
| 77 |
|
| 78 |
# Create embeddings and initialize retrieval chain
|
| 79 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
| 80 |
-
self.document_store = Chroma.from_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
| 82 |
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
| 83 |
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
|
@@ -109,6 +127,7 @@ class DocumentRAG:
|
|
| 109 |
return f"Error generating summary: {str(e)}"
|
| 110 |
|
| 111 |
def handle_query(self, question, history):
|
|
|
|
| 112 |
if not self.qa_chain:
|
| 113 |
return history + [("System", "Please process the documents first.")]
|
| 114 |
try:
|
|
|
|
| 14 |
from datetime import datetime
|
| 15 |
import pytz
|
| 16 |
|
| 17 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 18 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 19 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 20 |
+
from langchain_community.vectorstores import Chroma
|
| 21 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
|
| 22 |
+
import os
|
| 23 |
+
import tempfile
|
| 24 |
+
from datetime import datetime
|
| 25 |
+
import pytz
|
| 26 |
+
|
| 27 |
+
|
| 28 |
class DocumentRAG:
|
| 29 |
def __init__(self):
|
| 30 |
self.document_store = None
|
|
|
|
| 38 |
if not self.api_key:
|
| 39 |
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
| 40 |
|
| 41 |
+
# Persistent directory for Chroma to avoid tenant-related errors
|
| 42 |
+
self.chroma_persist_dir = "./chroma_storage"
|
| 43 |
+
os.makedirs(self.chroma_persist_dir, exist_ok=True)
|
| 44 |
+
|
| 45 |
def process_documents(self, uploaded_files):
|
| 46 |
"""Process uploaded files by saving them temporarily and extracting content."""
|
| 47 |
if not self.api_key:
|
|
|
|
| 65 |
elif temp_file_path.endswith('.csv'):
|
| 66 |
loader = CSVLoader(temp_file_path)
|
| 67 |
else:
|
| 68 |
+
return f"Unsupported file type: {uploaded_file.name}"
|
| 69 |
|
| 70 |
# Load the documents
|
| 71 |
try:
|
| 72 |
documents.extend(loader.load())
|
| 73 |
except Exception as e:
|
| 74 |
+
return f"Error loading {uploaded_file.name}: {str(e)}"
|
|
|
|
| 75 |
|
| 76 |
if not documents:
|
| 77 |
return "No valid documents were processed. Please check your files."
|
|
|
|
| 90 |
|
| 91 |
# Create embeddings and initialize retrieval chain
|
| 92 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
| 93 |
+
self.document_store = Chroma.from_documents(
|
| 94 |
+
documents,
|
| 95 |
+
embeddings,
|
| 96 |
+
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
| 100 |
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
| 101 |
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
|
|
|
| 127 |
return f"Error generating summary: {str(e)}"
|
| 128 |
|
| 129 |
def handle_query(self, question, history):
|
| 130 |
+
"""Handle user queries."""
|
| 131 |
if not self.qa_chain:
|
| 132 |
return history + [("System", "Please process the documents first.")]
|
| 133 |
try:
|