Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -50,6 +50,7 @@ class MultiAgentState(BaseModel):
|
|
| 50 |
|
| 51 |
class StoryState(BaseModel):
|
| 52 |
retrieved_docs: List[Any] = []
|
|
|
|
| 53 |
stories: Annotated[list[AnyMessage], add_messages]
|
| 54 |
story_topic: str = ""
|
| 55 |
stories_lst: Annotated[list, operator.add]
|
|
@@ -65,7 +66,24 @@ class DocumentRAG:
|
|
| 65 |
self.init_time = datetime.now(pytz.UTC)
|
| 66 |
self.embedding_choice = embedding_choice
|
| 67 |
|
| 68 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
self.chroma_persist_dir = "./chroma_storage"
|
| 70 |
os.makedirs(self.chroma_persist_dir, exist_ok=True)
|
| 71 |
|
|
@@ -324,6 +342,7 @@ class DocumentRAG:
|
|
| 324 |
docs = retriever.get_relevant_documents(query)
|
| 325 |
return {"retrieved_docs": docs, "question": query}
|
| 326 |
|
|
|
|
| 327 |
def rerank_node(self, state: StoryState):
|
| 328 |
topic = state.story_topic
|
| 329 |
query = f"Rerank documents based on how well they explain the topic {topic}"
|
|
@@ -333,12 +352,22 @@ class DocumentRAG:
|
|
| 333 |
if not texts:
|
| 334 |
return {"reranked_docs": [], "question": query}
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
return {"reranked_docs": top_docs, "question": query}
|
| 339 |
|
| 340 |
|
| 341 |
|
|
|
|
| 342 |
def generate_story_node(self, state: StoryState):
|
| 343 |
context = "\n\n".join(state.reranked_docs)
|
| 344 |
topic = state.story_topic
|
|
@@ -361,7 +390,15 @@ class DocumentRAG:
|
|
| 361 |
|
| 362 |
|
| 363 |
def run_multiagent_storygraph(self, topic: str, context: str):
|
| 364 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
# Define the story subgraph with reranking
|
| 367 |
story_graph = StateGraph(StoryState)
|
|
@@ -374,7 +411,7 @@ class DocumentRAG:
|
|
| 374 |
story_graph.set_finish_point("Generate")
|
| 375 |
story_subgraph = story_graph.compile()
|
| 376 |
|
| 377 |
-
#
|
| 378 |
graph = StateGraph(MultiAgentState)
|
| 379 |
graph.add_node("beginner_topic", self.beginner_topic)
|
| 380 |
graph.add_node("middle_topic", self.middle_topic)
|
|
@@ -386,18 +423,20 @@ class DocumentRAG:
|
|
| 386 |
graph.add_edge("beginner_topic", "middle_topic")
|
| 387 |
graph.add_edge("middle_topic", "advanced_topic")
|
| 388 |
graph.add_edge("advanced_topic", "topic_extractor")
|
| 389 |
-
graph.add_conditional_edges(
|
|
|
|
| 390 |
lambda state: [Send("story_generator", {"story_topic": t}) for t in state.sub_topic_list],
|
| 391 |
-
["story_generator"]
|
|
|
|
| 392 |
graph.add_edge("story_generator", END)
|
| 393 |
|
| 394 |
compiled = graph.compile(checkpointer=MemorySaver())
|
| 395 |
thread = {"configurable": {"thread_id": "storygraph-session"}}
|
| 396 |
|
| 397 |
-
# Initial
|
| 398 |
result = compiled.invoke({"topic": [topic], "context": [context]}, thread)
|
| 399 |
|
| 400 |
-
# Fallback if no subtopics
|
| 401 |
if not result.get("sub_topic_list"):
|
| 402 |
fallback_subs = ["Neural Networks", "Reinforcement Learning", "Supervised vs Unsupervised"]
|
| 403 |
compiled.update_state(thread, {"sub_topic_list": fallback_subs})
|
|
@@ -406,6 +445,7 @@ class DocumentRAG:
|
|
| 406 |
return result
|
| 407 |
|
| 408 |
|
|
|
|
| 409 |
if "rag_system" not in st.session_state or st.session_state.embedding_model != embedding_choice:
|
| 410 |
st.session_state.embedding_model = embedding_choice
|
| 411 |
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
|
|
|
|
| 50 |
|
| 51 |
class StoryState(BaseModel):
|
| 52 |
retrieved_docs: List[Any] = []
|
| 53 |
+
reranked_docs: List[str] = []
|
| 54 |
stories: Annotated[list[AnyMessage], add_messages]
|
| 55 |
story_topic: str = ""
|
| 56 |
stories_lst: Annotated[list, operator.add]
|
|
|
|
| 66 |
self.init_time = datetime.now(pytz.UTC)
|
| 67 |
self.embedding_choice = embedding_choice
|
| 68 |
|
| 69 |
+
# Set up appropriate LLM
|
| 70 |
+
if self.embedding_choice == "Cohere":
|
| 71 |
+
from langchain_cohere import ChatCohere
|
| 72 |
+
import cohere
|
| 73 |
+
self.llm = ChatCohere(
|
| 74 |
+
model="command-r-plus-08-2024",
|
| 75 |
+
temperature=0.7,
|
| 76 |
+
cohere_api_key=os.getenv("COHERE_API_KEY")
|
| 77 |
+
)
|
| 78 |
+
self.cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))
|
| 79 |
+
else:
|
| 80 |
+
self.llm = ChatOpenAI(
|
| 81 |
+
model_name="gpt-4",
|
| 82 |
+
temperature=0.7,
|
| 83 |
+
api_key=self.api_key
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Persistent directory for Chroma
|
| 87 |
self.chroma_persist_dir = "./chroma_storage"
|
| 88 |
os.makedirs(self.chroma_persist_dir, exist_ok=True)
|
| 89 |
|
|
|
|
| 342 |
docs = retriever.get_relevant_documents(query)
|
| 343 |
return {"retrieved_docs": docs, "question": query}
|
| 344 |
|
| 345 |
+
|
| 346 |
def rerank_node(self, state: StoryState):
|
| 347 |
topic = state.story_topic
|
| 348 |
query = f"Rerank documents based on how well they explain the topic {topic}"
|
|
|
|
| 352 |
if not texts:
|
| 353 |
return {"reranked_docs": [], "question": query}
|
| 354 |
|
| 355 |
+
if self.embedding_choice == "Cohere":
|
| 356 |
+
rerank_results = self.cohere_client.rerank(
|
| 357 |
+
query=query,
|
| 358 |
+
documents=texts,
|
| 359 |
+
top_n=5,
|
| 360 |
+
model="rerank-v3.5"
|
| 361 |
+
)
|
| 362 |
+
top_docs = [texts[result.index] for result in rerank_results.results]
|
| 363 |
+
else:
|
| 364 |
+
top_docs = sorted(texts, key=lambda t: -len(t))[:5]
|
| 365 |
+
|
| 366 |
return {"reranked_docs": top_docs, "question": query}
|
| 367 |
|
| 368 |
|
| 369 |
|
| 370 |
+
|
| 371 |
def generate_story_node(self, state: StoryState):
|
| 372 |
context = "\n\n".join(state.reranked_docs)
|
| 373 |
topic = state.story_topic
|
|
|
|
| 390 |
|
| 391 |
|
| 392 |
def run_multiagent_storygraph(self, topic: str, context: str):
|
| 393 |
+
if self.embedding_choice == "OpenAI":
|
| 394 |
+
self.llm = ChatOpenAI(model_name="gpt-4", temperature=0.7, api_key=self.api_key)
|
| 395 |
+
elif self.embedding_choice == "Cohere":
|
| 396 |
+
from langchain_cohere import ChatCohere
|
| 397 |
+
self.llm = ChatCohere(
|
| 398 |
+
model="command-r-plus-08-2024",
|
| 399 |
+
temperature=0.7,
|
| 400 |
+
cohere_api_key=os.getenv("COHERE_API_KEY")
|
| 401 |
+
)
|
| 402 |
|
| 403 |
# Define the story subgraph with reranking
|
| 404 |
story_graph = StateGraph(StoryState)
|
|
|
|
| 411 |
story_graph.set_finish_point("Generate")
|
| 412 |
story_subgraph = story_graph.compile()
|
| 413 |
|
| 414 |
+
# Define the main graph
|
| 415 |
graph = StateGraph(MultiAgentState)
|
| 416 |
graph.add_node("beginner_topic", self.beginner_topic)
|
| 417 |
graph.add_node("middle_topic", self.middle_topic)
|
|
|
|
| 423 |
graph.add_edge("beginner_topic", "middle_topic")
|
| 424 |
graph.add_edge("middle_topic", "advanced_topic")
|
| 425 |
graph.add_edge("advanced_topic", "topic_extractor")
|
| 426 |
+
graph.add_conditional_edges(
|
| 427 |
+
"topic_extractor",
|
| 428 |
lambda state: [Send("story_generator", {"story_topic": t}) for t in state.sub_topic_list],
|
| 429 |
+
["story_generator"]
|
| 430 |
+
)
|
| 431 |
graph.add_edge("story_generator", END)
|
| 432 |
|
| 433 |
compiled = graph.compile(checkpointer=MemorySaver())
|
| 434 |
thread = {"configurable": {"thread_id": "storygraph-session"}}
|
| 435 |
|
| 436 |
+
# Initial invocation
|
| 437 |
result = compiled.invoke({"topic": [topic], "context": [context]}, thread)
|
| 438 |
|
| 439 |
+
# Fallback if no subtopics found
|
| 440 |
if not result.get("sub_topic_list"):
|
| 441 |
fallback_subs = ["Neural Networks", "Reinforcement Learning", "Supervised vs Unsupervised"]
|
| 442 |
compiled.update_state(thread, {"sub_topic_list": fallback_subs})
|
|
|
|
| 445 |
return result
|
| 446 |
|
| 447 |
|
| 448 |
+
|
| 449 |
if "rag_system" not in st.session_state or st.session_state.embedding_model != embedding_choice:
|
| 450 |
st.session_state.embedding_model = embedding_choice
|
| 451 |
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
|