Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import sqlite3 | |
| import os | |
| import json | |
| from pathlib import Path | |
| import plotly.express as px | |
| from datetime import datetime, timezone | |
| from crewai import Agent, Crew, Process, Task | |
| from crewai.tools import tool | |
| from langchain_groq import ChatGroq | |
| from langchain_openai import ChatOpenAI | |
| from langchain.schema.output import LLMResult | |
| from langchain_community.tools.sql_database.tool import ( | |
| InfoSQLDatabaseTool, | |
| ListSQLDatabaseTool, | |
| QuerySQLCheckerTool, | |
| QuerySQLDataBaseTool, | |
| ) | |
| from langchain_community.utilities.sql_database import SQLDatabase | |
| from datasets import load_dataset | |
| import tempfile | |
| st.title("SQL-RAG Using CrewAI π") | |
| st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") | |
| # Initialize LLM | |
| llm = None | |
| # Model Selection | |
| model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) | |
| # API Key Validation and LLM Initialization | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| openai_api_key = os.getenv("OPENAI_API_KEY") | |
| if model_choice == "llama-3.3-70b": | |
| if not groq_api_key: | |
| st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
| elif model_choice == "GPT-4o": | |
| if not openai_api_key: | |
| st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
| llm = None | |
| else: | |
| llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") | |
| # Initialize session state for data persistence | |
| if "df" not in st.session_state: | |
| st.session_state.df = None | |
| if "show_preview" not in st.session_state: | |
| st.session_state.show_preview = False | |
| # Dataset Input | |
| input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
| if input_option == "Use Hugging Face Dataset": | |
| dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") | |
| if st.button("Load Dataset"): | |
| try: | |
| with st.spinner("Loading dataset..."): | |
| dataset = load_dataset(dataset_name, split="train") | |
| st.session_state.df = pd.DataFrame(dataset) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |
| elif input_option == "Upload CSV File": | |
| uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
| if uploaded_file: | |
| try: | |
| st.session_state.df = pd.read_csv(uploaded_file) | |
| st.session_state.show_preview = True # Show preview after loading | |
| st.success("File uploaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error loading file: {e}") | |
| # Show Dataset Preview Only After Loading | |
| if st.session_state.df is not None and st.session_state.show_preview: | |
| st.subheader("π Dataset Preview") | |
| st.dataframe(st.session_state.df.head()) | |
| # SQL-RAG Analysis | |
| if st.session_state.df is not None: | |
| temp_dir = tempfile.TemporaryDirectory() | |
| db_path = os.path.join(temp_dir.name, "data.db") | |
| connection = sqlite3.connect(db_path) | |
| st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) | |
| db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
| def list_tables() -> str: | |
| """List all tables in the database.""" | |
| return ListSQLDatabaseTool(db=db).invoke("") | |
| def tables_schema(tables: str) -> str: | |
| """Get the schema and sample rows for the specified tables.""" | |
| return InfoSQLDatabaseTool(db=db).invoke(tables) | |
| def execute_sql(sql_query: str) -> str: | |
| """Execute a SQL query against the database and return the results.""" | |
| return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
| def check_sql(sql_query: str) -> str: | |
| """Validate the SQL query syntax and structure before execution.""" | |
| return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
| sql_dev = Agent( | |
| role="Senior Database Developer", | |
| goal="Extract data using optimized SQL queries.", | |
| backstory="An expert in writing optimized SQL queries for complex databases.", | |
| llm=llm, | |
| tools=[list_tables, tables_schema, execute_sql, check_sql], | |
| ) | |
| data_analyst = Agent( | |
| role="Senior Data Analyst", | |
| goal="Analyze the data and produce insights.", | |
| backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
| llm=llm, | |
| ) | |
| report_writer = Agent( | |
| role="Technical Report Writer", | |
| goal="Summarize the insights into a clear report.", | |
| backstory="An expert in summarizing data insights into readable reports.", | |
| llm=llm, | |
| ) | |
| extract_data = Task( | |
| description="Extract data based on the query: {query}.", | |
| expected_output="Database results matching the query.", | |
| agent=sql_dev, | |
| ) | |
| analyze_data = Task( | |
| description="Analyze the extracted data for query: {query}.", | |
| expected_output="Analysis text summarizing findings (without a Conclusion section).", | |
| agent=data_analyst, | |
| context=[extract_data], | |
| ) | |
| write_report = Task( | |
| description="Summarize the analysis into an executive report without a Conclusion.", | |
| expected_output="Markdown report of insights without Conclusion.", | |
| agent=report_writer, | |
| context=[analyze_data], | |
| ) | |
| crew = Crew( | |
| agents=[sql_dev, data_analyst, report_writer], | |
| tasks=[extract_data, analyze_data, write_report], | |
| process=Process.sequential, | |
| verbose=True, | |
| ) | |
| # Tabs for Query Results and General Insights | |
| tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"]) | |
| # Tab 1: Query-Insights + Visualization | |
| with tab1: | |
| query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.") | |
| if st.button("Submit Query"): | |
| with st.spinner("Processing query..."): | |
| # Step 1: Generate Report without Conclusion | |
| inputs = {"query": query + " Provide a detailed analysis but DO NOT include a Conclusion."} | |
| report_result = crew.kickoff(inputs=inputs) | |
| # Step 2: Generate only the Conclusion | |
| conclusion_inputs = {"query": query + " Now, provide only the Conclusion for this analysis."} | |
| conclusion_result = crew.kickoff(inputs=conclusion_inputs) | |
| st.markdown("### Analysis Report:") | |
| # Step 3: Generate relevant visualizations | |
| visualizations = [] | |
| fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd", | |
| title="Salary Distribution by Job Title") | |
| visualizations.append(fig_salary) | |
| fig_experience = px.bar( | |
| st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
| x="experience_level", y="salary_in_usd", | |
| title="Average Salary by Experience Level" | |
| ) | |
| visualizations.append(fig_experience) | |
| fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
| title="Salary Distribution by Employment Type") | |
| visualizations.append(fig_employment) | |
| # Step 4: Display report without conclusion | |
| st.markdown(report_result) | |
| # Step 5: Insert Visual Insights | |
| st.markdown("## π Visual Insights") | |
| for fig in visualizations: | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Step 6: Append the Conclusion | |
| st.markdown("## Conclusion") | |
| st.markdown(conclusion_result) | |
| # Tab 2: Full Data Visualization | |
| with tab2: | |
| st.subheader("π Comprehensive Data Visualizations") | |
| fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency") | |
| st.plotly_chart(fig1) | |
| fig2 = px.bar( | |
| st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(), | |
| x="experience_level", y="salary_in_usd", | |
| title="Average Salary by Experience Level" | |
| ) | |
| st.plotly_chart(fig2) | |
| fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", | |
| title="Salary Distribution by Employment Type") | |
| st.plotly_chart(fig3) | |
| temp_dir.cleanup() | |
| else: | |
| st.info("Please load a dataset to proceed.") | |
| # Sidebar Reference | |
| with st.sidebar: | |
| st.header("π Reference:") | |
| st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)") | |