Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Create app.py
Browse files- interim/app.py +326 -0
interim/app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# to-do: Enable downloading multiple patent PDFs via corresponding links
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import shutil
|
6 |
+
import time
|
7 |
+
import fitz
|
8 |
+
import streamlit as st
|
9 |
+
import nltk
|
10 |
+
import tempfile
|
11 |
+
import subprocess
|
12 |
+
|
13 |
+
# Pin NLTK to version 3.9.1
|
14 |
+
REQUIRED_NLTK_VERSION = "3.9.1"
|
15 |
+
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])
|
16 |
+
|
17 |
+
# Set up temporary directory for NLTK resources
|
18 |
+
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
|
19 |
+
os.makedirs(nltk_data_path, exist_ok=True)
|
20 |
+
nltk.data.path.append(nltk_data_path)
|
21 |
+
|
22 |
+
# Download 'punkt_tab' for compatibility
|
23 |
+
try:
|
24 |
+
print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
|
25 |
+
nltk.download("punkt_tab", download_dir=nltk_data_path)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error downloading NLTK 'punkt_tab': {e}")
|
28 |
+
raise e
|
29 |
+
|
30 |
+
sys.path.append(os.path.abspath("."))
|
31 |
+
from langchain.chains import ConversationalRetrievalChain
|
32 |
+
from langchain.memory import ConversationBufferMemory
|
33 |
+
from langchain.llms import OpenAI
|
34 |
+
from langchain.document_loaders import UnstructuredPDFLoader
|
35 |
+
from langchain.vectorstores import Chroma
|
36 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
37 |
+
from langchain.text_splitter import NLTKTextSplitter
|
38 |
+
from patent_downloader import PatentDownloader
|
39 |
+
from langchain.document_loaders import PyMuPDFLoader
|
40 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
41 |
+
|
42 |
+
PERSISTED_DIRECTORY = tempfile.mkdtemp()
|
43 |
+
|
44 |
+
# Fetch API key securely from the environment
|
45 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
46 |
+
if not OPENAI_API_KEY:
|
47 |
+
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
|
48 |
+
st.stop()
|
49 |
+
|
50 |
+
def check_poppler_installed():
|
51 |
+
if not shutil.which("pdfinfo"):
|
52 |
+
raise EnvironmentError(
|
53 |
+
"Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
|
54 |
+
)
|
55 |
+
|
56 |
+
check_poppler_installed()
|
57 |
+
|
58 |
+
def load_docs(document_path):
|
59 |
+
try:
|
60 |
+
import fitz # PyMuPDF for text extraction
|
61 |
+
|
62 |
+
# Step 1: Extract plain text from PDF
|
63 |
+
doc = fitz.open(document_path)
|
64 |
+
extracted_text = []
|
65 |
+
|
66 |
+
for page_num, page in enumerate(doc):
|
67 |
+
page_text = page.get_text("text") # Extract text
|
68 |
+
clean_page_text = clean_extracted_text(page_text)
|
69 |
+
if clean_page_text: # Keep only non-empty cleaned text
|
70 |
+
extracted_text.append(clean_page_text)
|
71 |
+
|
72 |
+
doc.close()
|
73 |
+
|
74 |
+
# Step 2: Combine cleaned text
|
75 |
+
full_text = "\n".join(extracted_text)
|
76 |
+
st.write(f"📄 Total Cleaned Text Length: {len(full_text)} characters")
|
77 |
+
|
78 |
+
# Step 3: Chunk the cleaned text
|
79 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
80 |
+
chunk_size=1000,
|
81 |
+
chunk_overlap=100,
|
82 |
+
separators=["\n\n", "\n", " ", ""]
|
83 |
+
)
|
84 |
+
split_docs = text_splitter.create_documents([full_text])
|
85 |
+
|
86 |
+
# Debug: Show filtered chunks
|
87 |
+
st.write(f"🔍 Total Chunks After Splitting: {len(split_docs)}")
|
88 |
+
for i, doc in enumerate(split_docs[:5]): # Show first 5 chunks
|
89 |
+
st.write(f"Chunk {i + 1}: {doc.page_content[:300]}...")
|
90 |
+
|
91 |
+
return split_docs
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"Failed to load and process PDF: {e}")
|
94 |
+
st.stop()
|
95 |
+
|
96 |
+
|
97 |
+
def clean_extracted_text(text):
|
98 |
+
"""
|
99 |
+
Cleans extracted text to remove metadata, headers, and irrelevant content.
|
100 |
+
"""
|
101 |
+
lines = text.split("\n")
|
102 |
+
cleaned_lines = []
|
103 |
+
|
104 |
+
for line in lines:
|
105 |
+
line = line.strip()
|
106 |
+
|
107 |
+
# Filter out lines with metadata patterns
|
108 |
+
if (
|
109 |
+
re.match(r"^(U\.S\.|United States|Sheet|Figure|References|Patent No|Date of Patent)", line)
|
110 |
+
or re.match(r"^\(?\d+\)?$", line) # Matches single numbers (page numbers)
|
111 |
+
or "Examiner" in line
|
112 |
+
or "Attorney" in line
|
113 |
+
or len(line) < 30 # Skip very short lines
|
114 |
+
):
|
115 |
+
continue
|
116 |
+
|
117 |
+
cleaned_lines.append(line)
|
118 |
+
|
119 |
+
return "\n".join(cleaned_lines)
|
120 |
+
|
121 |
+
|
122 |
+
def already_indexed(vectordb, file_name):
|
123 |
+
indexed_sources = set(
|
124 |
+
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
|
125 |
+
)
|
126 |
+
return file_name in indexed_sources
|
127 |
+
|
128 |
+
def load_chain(file_name=None):
|
129 |
+
loaded_patent = st.session_state.get("LOADED_PATENT")
|
130 |
+
|
131 |
+
# Debug: Check PERSISTED_DIRECTORY
|
132 |
+
st.write(f"Using Persisted Directory: {PERSISTED_DIRECTORY}")
|
133 |
+
vectordb = Chroma(
|
134 |
+
persist_directory=PERSISTED_DIRECTORY,
|
135 |
+
embedding_function=HuggingFaceEmbeddings(),
|
136 |
+
)
|
137 |
+
|
138 |
+
# Debug: Confirm already indexed
|
139 |
+
if loaded_patent == file_name or already_indexed(vectordb, file_name):
|
140 |
+
st.write("✅ Already indexed.")
|
141 |
+
else:
|
142 |
+
st.write("🔄 Starting document processing and vectorstore update...")
|
143 |
+
|
144 |
+
# Remove existing collection and load new docs
|
145 |
+
vectordb.delete_collection()
|
146 |
+
docs = load_docs(file_name)
|
147 |
+
|
148 |
+
# Debug: Verify text chunking
|
149 |
+
st.write(f"🔍 Number of Documents Loaded: {len(docs)}")
|
150 |
+
for i, doc in enumerate(docs[:5]): # Show first 5 chunks for debugging
|
151 |
+
st.write(f"Chunk {i + 1}: {doc.page_content[:200]}...")
|
152 |
+
|
153 |
+
# Update vectorstore
|
154 |
+
vectordb = Chroma.from_documents(
|
155 |
+
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
|
156 |
+
)
|
157 |
+
vectordb.persist()
|
158 |
+
st.write("✅ Vectorstore successfully updated and persisted.")
|
159 |
+
|
160 |
+
# Save loaded patent in session state
|
161 |
+
st.session_state["LOADED_PATENT"] = file_name
|
162 |
+
|
163 |
+
# Debug: Check vectorstore indexing
|
164 |
+
indexed_docs = vectordb.get(include=["documents"])
|
165 |
+
st.write(f"✅ Indexed Documents in Vectorstore: {len(indexed_docs['documents'])}")
|
166 |
+
for i, doc in enumerate(indexed_docs["documents"][:3]): # Show first 3 indexed docs
|
167 |
+
st.write(f"Indexed Doc {i + 1}: {doc[:200]}...")
|
168 |
+
|
169 |
+
# Test retrieval with a sample query
|
170 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
171 |
+
test_query = "What is this document about?"
|
172 |
+
results = retriever.get_relevant_documents(test_query)
|
173 |
+
|
174 |
+
# Debug: Verify document retrieval
|
175 |
+
st.write("🔍 Test Retrieval Results for Query:")
|
176 |
+
if results:
|
177 |
+
for i, res in enumerate(results):
|
178 |
+
st.write(f"Retrieved Doc {i + 1}: {res.page_content[:200]}...")
|
179 |
+
else:
|
180 |
+
st.warning("No documents retrieved for test query.")
|
181 |
+
|
182 |
+
# Configure memory for conversation
|
183 |
+
memory = ConversationBufferMemory(
|
184 |
+
memory_key="chat_history",
|
185 |
+
return_messages=True,
|
186 |
+
input_key="question",
|
187 |
+
output_key="answer",
|
188 |
+
)
|
189 |
+
|
190 |
+
return ConversationalRetrievalChain.from_llm(
|
191 |
+
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
|
192 |
+
retriever,
|
193 |
+
return_source_documents=False,
|
194 |
+
memory=memory,
|
195 |
+
)
|
196 |
+
|
197 |
+
def extract_patent_number(url):
|
198 |
+
pattern = r"/patent/([A-Z]{2}\d+)"
|
199 |
+
match = re.search(pattern, url)
|
200 |
+
return match.group(1) if match else None
|
201 |
+
|
202 |
+
def download_pdf(patent_number):
|
203 |
+
try:
|
204 |
+
patent_downloader = PatentDownloader(verbose=True)
|
205 |
+
output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
|
206 |
+
return output_path[0]
|
207 |
+
except Exception as e:
|
208 |
+
st.error(f"Failed to download patent PDF: {e}")
|
209 |
+
st.stop()
|
210 |
+
|
211 |
+
def preview_pdf(pdf_path):
|
212 |
+
"""Generate and display the first page of the PDF as an image."""
|
213 |
+
try:
|
214 |
+
doc = fitz.open(pdf_path) # Open PDF
|
215 |
+
first_page = doc[0] # Extract the first page
|
216 |
+
pix = first_page.get_pixmap() # Render page to a Pixmap (image)
|
217 |
+
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
|
218 |
+
pix.save(temp_image_path) # Save the image temporarily
|
219 |
+
return temp_image_path
|
220 |
+
except Exception as e:
|
221 |
+
st.error(f"Error generating PDF preview: {e}")
|
222 |
+
return None
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
st.set_page_config(
|
226 |
+
page_title="Patent Chat: Google Patents Chat Demo",
|
227 |
+
page_icon="📖",
|
228 |
+
layout="wide",
|
229 |
+
initial_sidebar_state="expanded",
|
230 |
+
)
|
231 |
+
st.header("📖 Patent Chat: Google Patents Chat Demo")
|
232 |
+
|
233 |
+
# Input for Google Patent Link
|
234 |
+
patent_link = st.text_area(
|
235 |
+
"Enter Google Patent Link:",
|
236 |
+
value="https://patents.google.com/patent/US8676427B1/en",
|
237 |
+
height=100
|
238 |
+
)
|
239 |
+
|
240 |
+
# Initialize session state
|
241 |
+
for key in ["LOADED_PATENT", "pdf_preview", "loaded_pdf_path", "chain", "messages"]:
|
242 |
+
if key not in st.session_state:
|
243 |
+
st.session_state[key] = None
|
244 |
+
|
245 |
+
# Button to load and process patent
|
246 |
+
if st.button("Load and Process Patent"):
|
247 |
+
if not patent_link:
|
248 |
+
st.warning("Please enter a valid Google patent link.")
|
249 |
+
st.stop()
|
250 |
+
|
251 |
+
# Extract patent number
|
252 |
+
patent_number = extract_patent_number(patent_link)
|
253 |
+
if not patent_number:
|
254 |
+
st.error("Invalid patent link format.")
|
255 |
+
st.stop()
|
256 |
+
|
257 |
+
st.write(f"Patent number: **{patent_number}**")
|
258 |
+
|
259 |
+
# File handling
|
260 |
+
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
|
261 |
+
if not os.path.isfile(pdf_path):
|
262 |
+
st.write("📥 Downloading patent file...")
|
263 |
+
try:
|
264 |
+
pdf_path = download_pdf(patent_number)
|
265 |
+
st.write(f"✅ File downloaded: {pdf_path}")
|
266 |
+
except Exception as e:
|
267 |
+
st.error(f"Failed to download patent: {e}")
|
268 |
+
st.stop()
|
269 |
+
else:
|
270 |
+
st.write("✅ File already downloaded.")
|
271 |
+
|
272 |
+
# Generate PDF preview only if not already displayed
|
273 |
+
if not st.session_state.get("pdf_preview_displayed", False):
|
274 |
+
st.write("🖼️ Generating PDF preview...")
|
275 |
+
preview_image_path = preview_pdf(pdf_path)
|
276 |
+
if preview_image_path:
|
277 |
+
st.session_state.pdf_preview = preview_image_path
|
278 |
+
st.image(preview_image_path, caption="First Page Preview", use_container_width=True)
|
279 |
+
st.session_state["pdf_preview_displayed"] = True
|
280 |
+
else:
|
281 |
+
st.warning("Failed to generate PDF preview.")
|
282 |
+
st.session_state.pdf_preview = None
|
283 |
+
|
284 |
+
# Load the document into the system
|
285 |
+
st.write("🔄 Loading document into the system...")
|
286 |
+
try:
|
287 |
+
st.session_state.chain = load_chain(pdf_path)
|
288 |
+
st.session_state.LOADED_PATENT = patent_number
|
289 |
+
st.session_state.loaded_pdf_path = pdf_path
|
290 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
|
291 |
+
st.success("🚀 Document successfully loaded! You can now start asking questions.")
|
292 |
+
except Exception as e:
|
293 |
+
st.error(f"Failed to load the document: {e}")
|
294 |
+
st.stop()
|
295 |
+
|
296 |
+
# Display previous chat messages
|
297 |
+
if st.session_state.messages:
|
298 |
+
for message in st.session_state.messages:
|
299 |
+
with st.chat_message(message["role"]):
|
300 |
+
st.markdown(message["content"])
|
301 |
+
|
302 |
+
# User input for questions
|
303 |
+
if st.session_state.chain:
|
304 |
+
if user_input := st.chat_input("What is your question?"):
|
305 |
+
# User message
|
306 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
307 |
+
with st.chat_message("user"):
|
308 |
+
st.markdown(user_input)
|
309 |
+
|
310 |
+
# Assistant response
|
311 |
+
with st.chat_message("assistant"):
|
312 |
+
message_placeholder = st.empty()
|
313 |
+
full_response = ""
|
314 |
+
|
315 |
+
with st.spinner("Generating response..."):
|
316 |
+
try:
|
317 |
+
# Generate response using the chain
|
318 |
+
assistant_response = st.session_state.chain({"question": user_input})
|
319 |
+
full_response = assistant_response.get("answer", "I'm sorry, I couldn't process that question.")
|
320 |
+
except Exception as e:
|
321 |
+
full_response = f"An error occurred: {e}"
|
322 |
+
|
323 |
+
message_placeholder.markdown(full_response)
|
324 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
325 |
+
else:
|
326 |
+
st.info("Press the 'Load and Process Patent' button to start processing.")
|