Spaces:
Sleeping
Sleeping
# ref: https://github.com/twy80/LangChain_llm_Agent/tree/main | |
import streamlit as st | |
import os, base64, re, requests, datetime, time, json | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
from functools import partial | |
from tempfile import NamedTemporaryFile | |
from audio_recorder_streamlit import audio_recorder | |
from PIL import Image, UnidentifiedImageError | |
from openai import OpenAI | |
from langchain_openai import ChatOpenAI | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_anthropic import ChatAnthropic | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from langchain_google_community import GoogleSearchAPIWrapper | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.schema import HumanMessage, AIMessage | |
from langchain_community.utilities import BingSearchAPIWrapper | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.document_loaders import Docx2txtLoader | |
from langchain_community.document_loaders import TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain.tools import Tool, tool | |
from langchain.tools.retriever import create_retriever_tool | |
# from langchain.agents import create_openai_tools_agent | |
from langchain.agents import create_tool_calling_agent | |
from langchain.agents import create_react_agent | |
from langchain.agents import AgentExecutor | |
from langchain_community.agent_toolkits.load_tools import load_tools | |
# from langchain_experimental.tools import PythonREPLTool | |
from langchain_experimental.utilities import PythonREPL | |
from langchain.callbacks.base import BaseCallbackHandler | |
from pydantic import BaseModel, Field | |
# The following are for type annotations | |
from typing import Union, List, Literal, Optional, Dict, Any, Annotated | |
from matplotlib.figure import Figure | |
from streamlit.runtime.uploaded_file_manager import UploadedFile | |
from openai._legacy_response import HttpxBinaryResponseContent | |
from tempfile import NamedTemporaryFile, TemporaryDirectory | |
# Load API keys from Hugging Face secrets | |
try: | |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] | |
os.environ["BING_SUBSCRIPTION_KEY"] = st.secrets.get("BING_SUBSCRIPTION_KEY", "") | |
os.environ["GOOGLE_API_KEY"] = st.secrets.get("GOOGLE_API_KEY", "") | |
os.environ["GOOGLE_CSE_ID"] = st.secrets.get("GOOGLE_CSE_ID", "") | |
except KeyError as e: | |
st.error(f"Missing required secret: {e}. Please set it in Hugging Face Space secrets.") | |
st.stop() | |
def initialize_session_state_variables() -> None: | |
""" | |
Initialize all the session state variables. | |
""" | |
default_values = { | |
"ready": False, | |
"openai": None, | |
"history": [], | |
"model_type": "GPT Models from OpenAI", | |
"agent_type": 2 * ["Tool Calling"], | |
"ai_role": 2 * ["You are a helpful AI assistant."], | |
"prompt_exists": False, | |
"temperature": [0.7, 0.7], | |
"audio_bytes": None, | |
"mic_used": False, | |
"audio_response": None, | |
"image_url": None, | |
"image_description": None, | |
"uploader_key": 0, | |
"tool_names": [[], []], | |
"bing_subscription_validity": False, | |
"google_cse_id_validity": False, | |
"vector_store_message": None, | |
"retriever_tool": None, | |
"show_uploader": False | |
} | |
for key, value in default_values.items(): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
class StreamHandler(BaseCallbackHandler): | |
def __init__(self, container, initial_text=""): | |
self.container = container | |
self.text = initial_text | |
def on_llm_new_token(self, token: Any, **kwargs) -> None: | |
new_text = self._extract_text(token) | |
if new_text: | |
self.text += new_text | |
self.container.markdown(self.text) | |
def _extract_text(self, token: Any) -> str: | |
if isinstance(token, str): | |
return token | |
elif isinstance(token, list): | |
return ''.join(self._extract_text(t) for t in token) | |
elif isinstance(token, dict): | |
return token.get('text', '') | |
else: | |
return str(token) | |
def check_api_keys() -> None: | |
# Unset this flag to check the validity of the OpenAI API key | |
st.session_state.ready = False | |
def message_history_to_string(extra_space: bool=True) -> str: | |
""" | |
Return a string of the chat history contained in | |
st.session_state.history. | |
""" | |
history_list = [] | |
for msg in st.session_state.history: | |
if isinstance(msg, HumanMessage): | |
history_list.append(f"Human: {msg.content}") | |
else: | |
history_list.append(f"AI: {msg.content}") | |
new_lines = "\n\n" if extra_space else "\n" | |
return new_lines.join(history_list) | |
def get_chat_model( | |
model: str, | |
temperature: float, | |
callbacks: List[BaseCallbackHandler] | |
) -> Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI, None]: | |
""" | |
Get the appropriate chat model based on the given model name. | |
""" | |
model_map = { | |
"gpt-": ChatOpenAI, | |
} | |
for prefix, ModelClass in model_map.items(): | |
if model.startswith(prefix): | |
return ModelClass( | |
model=model, | |
temperature=temperature, | |
streaming=True, | |
callbacks=callbacks | |
) | |
return None | |
def process_with_images( | |
llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI], | |
message_content: str, | |
image_urls: List[str] | |
) -> str: | |
""" | |
Process the given history query with associated images using a language model. | |
""" | |
content_with_images = ( | |
[{"type": "text", "text": message_content}] + | |
[{"type": "image_url", "image_url": {"url": url}} for url in image_urls] | |
) | |
message_with_images = [HumanMessage(content=content_with_images)] | |
return llm.invoke(message_with_images).content | |
def process_with_tools( | |
llm: Union[ChatOpenAI, ChatAnthropic, ChatGoogleGenerativeAI], | |
tools: List[Tool], | |
agent_type: str, | |
agent_prompt: str, | |
history_query: dict | |
) -> str: | |
""" | |
Create an AI agent based on the specified agent type and tools, | |
then use this agent to process the given history query. | |
""" | |
if agent_type == "Tool Calling": | |
agent = create_tool_calling_agent(llm, tools, agent_prompt) | |
else: | |
agent = create_react_agent(llm, tools, agent_prompt) | |
agent_executor = AgentExecutor( | |
agent=agent, tools=tools, max_iterations=5, verbose=False, | |
handle_parsing_errors=True, | |
) | |
return agent_executor.invoke(history_query)["output"] | |
def run_agent( | |
query: str, | |
model: str, | |
tools: List[Tool], | |
image_urls: List[str], | |
temperature: float=0.7, | |
agent_type: Literal["Tool Calling", "ReAct"]="Tool Calling", | |
) -> Union[str, None]: | |
""" | |
Generate text based on user queries. | |
Args: | |
query: User's query | |
model: LLM like "gpt-4o" | |
tools: list of tools such as Search and Retrieval | |
image_urls: List of URLs for images | |
temperature: Value between 0 and 1. Defaults to 0.7 | |
agent_type: 'Tool Calling' or 'ReAct' | |
Return: | |
generated text | |
""" | |
try: | |
# Ensure retriever tool is included when "Retrieval" is selected | |
if "Retrieval" in st.session_state.tool_names[0]: | |
if st.session_state.retriever_tool: | |
retriever_tool_name = "retriever" # Ensure naming consistency | |
if retriever_tool_name not in [tool.name for tool in tools]: | |
tools.append(st.session_state.retriever_tool) | |
st.write(f"✅ **{retriever_tool_name} tool has been added successfully.**") | |
else: | |
st.error("❌ Retriever tool is not initialized. Please create a vector store first.") | |
return None # Exit early to avoid broken tool usage | |
# Debugging: Print final tools list | |
st.write("**Final Tools Being Used:**", [tool.name for tool in tools]) | |
if "retriever" in [tool.name for tool in tools]: | |
st.success("✅ Retriever tool is confirmed and ready for use.") | |
elif "Retrieval" in st.session_state.tool_names[0]: | |
st.warning("⚠️ 'Retrieval' was selected but the retriever tool is missing!") | |
# Initialize the LLM model | |
llm = get_chat_model(model, temperature, [StreamHandler(st.empty())]) | |
if llm is None: | |
st.error(f"❌ Unsupported model: {model}", icon="🚨") | |
return None | |
# Prepare chat history | |
if agent_type == "Tool Calling": | |
chat_history = st.session_state.history | |
else: | |
chat_history = message_history_to_string() | |
history_query = {"chat_history": chat_history, "input": query} | |
# Generate message content | |
message_with_no_image = st.session_state.chat_prompt.invoke(history_query) | |
message_content = message_with_no_image.messages[0].content | |
if image_urls: | |
# Handle images if provided | |
generated_text = process_with_images(llm, message_content, image_urls) | |
human_message = HumanMessage( | |
content=query, additional_kwargs={"image_urls": image_urls} | |
) | |
elif tools: | |
# Use tools for query execution | |
generated_text = process_with_tools( | |
llm, tools, agent_type, st.session_state.agent_prompt, history_query | |
) | |
human_message = HumanMessage(content=query) | |
else: | |
# Fall back to basic query execution without tools | |
generated_text = llm.invoke(message_with_no_image).content | |
human_message = HumanMessage(content=query) | |
# Convert response into plain text | |
if isinstance(generated_text, list): | |
generated_text = generated_text[0]["text"] | |
# Update conversation history | |
st.session_state.history.append(human_message) | |
st.session_state.history.append(AIMessage(content=generated_text)) | |
return generated_text | |
except Exception as e: | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return None | |
def openai_create_image( | |
description: str, model: str="dall-e-3", size: str="1024x1024" | |
) -> Optional[str]: | |
""" | |
Generate image based on user description. | |
Args: | |
description: User description | |
model: Default set to "dall-e-3" | |
size: Pixel size of the generated image | |
Return: | |
URL of the generated image | |
""" | |
try: | |
with st.spinner("AI is generating..."): | |
response = st.session_state.openai.images.generate( | |
model=model, | |
prompt=description, | |
size=size, | |
quality="standard", | |
n=1, | |
) | |
image_url = response.data[0].url | |
except Exception as e: | |
image_url = None | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return image_url | |
def get_vector_store(uploaded_files: List[UploadedFile]) -> Optional[FAISS]: | |
""" | |
Take a list of UploadedFile objects as input, and return a FAISS vector store. | |
""" | |
if not uploaded_files: | |
return None | |
documents = [] | |
loader_map = { | |
".pdf": PyPDFLoader, | |
".txt": TextLoader, | |
".docx": Docx2txtLoader | |
} | |
try: | |
# Use a temporary directory instead of a fixed 'files/' directory | |
with TemporaryDirectory() as temp_dir: | |
for uploaded_file in uploaded_files: | |
# Create a temporary file in the system's temporary directory | |
with NamedTemporaryFile(dir=temp_dir, delete=False) as temp_file: | |
temp_file.write(uploaded_file.getbuffer()) | |
filepath = temp_file.name | |
file_ext = os.path.splitext(uploaded_file.name.lower())[1] | |
loader_class = loader_map.get(file_ext) | |
if not loader_class: | |
st.error(f"Unsupported file type: {file_ext}", icon="🚨") | |
return None | |
# Load the document using the selected loader | |
loader = loader_class(filepath) | |
documents.extend(loader.load()) | |
with st.spinner("Vector store in preparation..."): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, chunk_overlap=200 | |
) | |
doc = text_splitter.split_documents(documents) | |
# Choose embeddings | |
if st.session_state.model_type == "GPT Models from OpenAI": | |
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", dimensions=1536) | |
else: | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
# Create FAISS vector database | |
vector_store = FAISS.from_documents(doc, embeddings) | |
except Exception as e: | |
vector_store = None | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return vector_store | |
def get_retriever() -> None: | |
""" | |
Upload document(s), create a vector store, prepare a retriever tool, | |
save the tool to the variable st.session_state.retriever_tool. | |
""" | |
# Section Title | |
st.write("") | |
st.write("**Query Document(s)**") | |
# File Upload Input | |
uploaded_files = st.file_uploader( | |
label="Upload an article", | |
type=["txt", "pdf", "docx"], | |
accept_multiple_files=True, | |
label_visibility="collapsed", | |
key="document_upload_" + str(st.session_state.uploader_key), | |
) | |
# Check if files are uploaded | |
if uploaded_files: | |
# Use a unique button key to avoid duplicate presses | |
if st.button(label="Create the vector store", key=f"create_vector_{st.session_state.uploader_key}"): | |
st.info("Creating the vector store and initializing the retriever tool...") | |
# Attempt to create the vector store | |
vector_store = get_vector_store(uploaded_files) | |
if vector_store: | |
uploaded_file_names = [file.name for file in uploaded_files] | |
st.session_state.vector_store_message = ( | |
f"Vector store for :blue[[{', '.join(uploaded_file_names)}]] is ready!" | |
) | |
# Initialize retriever and create tool | |
retriever = vector_store.as_retriever() | |
st.session_state.retriever_tool = create_retriever_tool( | |
retriever, | |
name="retriever", | |
description="Search uploaded documents for information when queried.", | |
) | |
# Add "Retrieval" to the tools list if not already present | |
if "Retrieval" not in st.session_state.tool_names[0]: | |
st.session_state.tool_names[0].append("Retrieval") | |
st.success("✅ Retriever tool has been successfully initialized and is ready to use.") | |
# Debugging output | |
st.write("**Current Tools:**", st.session_state.tool_names[0]) | |
else: | |
st.error("❌ Failed to create vector store. Please check the uploaded files (supported formats: txt, pdf, docx).") | |
else: | |
st.info("Please upload document(s) to create the vector store.") | |
def display_text_with_equations(text: str): | |
# Replace inline LaTeX equation delimiters \\( ... \\) with $ | |
modified_text = text.replace("\\(", "$").replace("\\)", "$") | |
# Replace block LaTeX equation delimiters \\[ ... \\] with $$ | |
modified_text = modified_text.replace("\\[", "$$").replace("\\]", "$$") | |
# Use st.markdown to display the formatted text with equations | |
st.markdown(modified_text) | |
def read_audio(audio_bytes: bytes) -> Optional[str]: | |
""" | |
Read audio bytes and return the corresponding text. | |
""" | |
try: | |
audio_data = BytesIO(audio_bytes) | |
audio_data.name = "recorded_audio.wav" # dummy name | |
transcript = st.session_state.openai.audio.transcriptions.create( | |
model="whisper-1", file=audio_data | |
) | |
text = transcript.text | |
except Exception as e: | |
text = None | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return text | |
def input_from_mic() -> Optional[str]: | |
""" | |
Convert audio input from mic to text and return it. | |
If there is no audio input, None is returned. | |
""" | |
time.sleep(0.5) | |
audio_bytes = audio_recorder( | |
pause_threshold=3.0, text="Speak", icon_size="2x", | |
recording_color="#e87070", neutral_color="#6aa36f" | |
) | |
if audio_bytes == st.session_state.audio_bytes or audio_bytes is None: | |
return None | |
else: | |
st.session_state.audio_bytes = audio_bytes | |
return read_audio(audio_bytes) | |
def perform_tts(text: str) -> Optional[HttpxBinaryResponseContent]: | |
""" | |
Take text as input, perform text-to-speech (TTS), | |
and return an audio_response. | |
""" | |
try: | |
with st.spinner("TTS in progress..."): | |
audio_response = st.session_state.openai.audio.speech.create( | |
model="tts-1", | |
voice="fable", | |
input=text, | |
) | |
except Exception as e: | |
audio_response = None | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return audio_response | |
def play_audio(audio_response: HttpxBinaryResponseContent) -> None: | |
""" | |
Take an audio response (a bytes-like object) | |
from TTS as input, and play the audio. | |
""" | |
audio_data = audio_response.read() | |
# Encode audio data to base64 | |
b64 = base64.b64encode(audio_data).decode("utf-8") | |
# Create a markdown string to embed the audio player with the base64 source | |
md = f""" | |
<audio controls autoplay style="width: 100%;"> | |
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3"> | |
Your browser does not support the audio element. | |
</audio> | |
""" | |
# Use Streamlit to render the audio player | |
st.markdown(md, unsafe_allow_html=True) | |
def image_to_base64(image: Image) -> str: | |
""" | |
Convert an image object from PIL to a base64-encoded image, | |
and return the resulting encoded image as a string to be used | |
in place of a URL. | |
""" | |
# Convert the image to RGB mode if necessary | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Save the image to a BytesIO object | |
buffered_image = BytesIO() | |
image.save(buffered_image, format="JPEG") | |
# Convert BytesIO to bytes and encode to base64 | |
img_str = base64.b64encode(buffered_image.getvalue()) | |
# Convert bytes to string | |
base64_image = img_str.decode("utf-8") | |
return f"data:image/jpeg;base64,{base64_image}" | |
def shorten_image(image: Image, max_pixels: int=1024) -> Image: | |
""" | |
Take an Image object as input, and shorten the image size | |
if the image is greater than max_pixels x max_pixels. | |
""" | |
if max(image.width, image.height) > max_pixels: | |
if image.width > image.height: | |
new_width, new_height = 1024, image.height * 1024 // image.width | |
else: | |
new_width, new_height = image.width * 1024 // image.height, 1024 | |
image = image.resize((new_width, new_height)) | |
return image | |
def upload_image_files_return_urls( | |
type: List[str]=["jpg", "jpeg", "png", "bmp"] | |
) -> List[str]: | |
""" | |
Upload image files, convert them to base64-encoded images, and | |
return the list of the resulting encoded images to be used | |
in place of URLs. | |
""" | |
st.write("") | |
st.write("**Query Image(s)**") | |
source = st.radio( | |
label="Image selection", | |
options=("Uploaded", "From URL"), | |
horizontal=True, | |
label_visibility="collapsed", | |
) | |
image_urls = [] | |
if source == "Uploaded": | |
uploaded_files = st.file_uploader( | |
label="Upload images", | |
type=type, | |
accept_multiple_files=True, | |
label_visibility="collapsed", | |
key="image_upload_" + str(st.session_state.uploader_key), | |
) | |
if uploaded_files: | |
try: | |
for image_file in uploaded_files: | |
image = Image.open(image_file) | |
thumbnail = shorten_image(image, 300) | |
st.image(thumbnail) | |
image = shorten_image(image, 1024) | |
image_urls.append(image_to_base64(image)) | |
except UnidentifiedImageError as e: | |
st.error(f"An error occurred: {e}", icon="🚨") | |
else: | |
image_url = st.text_input( | |
label="URL of the image", | |
label_visibility="collapsed", | |
key="image_url_" + str(st.session_state.uploader_key), | |
) | |
if image_url: | |
if is_url(image_url): | |
st.image(image_url) | |
image_urls = [image_url] | |
else: | |
st.error("Enter a proper URL", icon="🚨") | |
return image_urls | |
def fig_to_base64(fig: Figure) -> str: | |
""" | |
Convert a Figure object to a base64-encoded image, and return | |
the resulting encoded image to be used in place of a URL. | |
""" | |
with BytesIO() as buffer: | |
fig.savefig(buffer, format="JPEG") | |
buffer.seek(0) | |
image = Image.open(buffer) | |
return image_to_base64(image) | |
def is_url(text: str) -> bool: | |
""" | |
Determine whether text is a URL or not. | |
""" | |
regex = r"(http|https)://([\w_-]+(?:\.[\w_-]+)+)(:\S*)?" | |
p = re.compile(regex) | |
match = p.match(text) | |
if match: | |
return True | |
else: | |
return False | |
def reset_conversation() -> None: | |
""" | |
Reset the session_state variables for resetting the conversation. | |
""" | |
st.session_state.history = [] | |
st.session_state.ai_role[1] = st.session_state.ai_role[0] | |
st.session_state.prompt_exists = False | |
st.session_state.temperature[1] = st.session_state.temperature[0] | |
st.session_state.audio_response = None | |
st.session_state.vector_store_message = None | |
st.session_state.tool_names[1] = st.session_state.tool_names[0] | |
st.session_state.agent_type[1] = st.session_state.agent_type[0] | |
st.session_state.retriever_tool = None | |
st.session_state.uploader_key = 0 | |
def switch_between_apps() -> None: | |
""" | |
Keep the chat settings when switching the mode. | |
""" | |
st.session_state.temperature[1] = st.session_state.temperature[0] | |
st.session_state.ai_role[1] = st.session_state.ai_role[0] | |
st.session_state.tool_names[1] = st.session_state.tool_names[0] | |
st.session_state.agent_type[1] = st.session_state.agent_type[0] | |
def python_repl( | |
code: Annotated[str, "The python code to execute to generate your chart."], | |
): | |
"""Use this to execute python code. If you want to see the output of a value, | |
you should print it out with `print(...)`. This is visible to the user.""" | |
try: | |
result = PythonREPL().run(code) | |
except BaseException as e: | |
return f"Failed to execute. Error: {repr(e)}" | |
result_str = f"Successfully executed:\n```python\n{code}\n```\nStdout: {result}" | |
return ( | |
result_str + "\n\nIf you have completed all tasks, respond with FINAL ANSWER." | |
) | |
def set_tools() -> List[Tool]: | |
""" | |
Set and return the tools for the agent. Tools that can be selected | |
are internet_search, arxiv, wikipedia, python_repl, and retrieval. | |
A Bing Subscription Key or Google CSE ID is required for internet_search. | |
""" | |
class MySearchToolInput(BaseModel): | |
query: str = Field(description="search query to look up") | |
# Load tools | |
arxiv = load_tools(["arxiv"])[0] | |
wikipedia = load_tools(["wikipedia"])[0] | |
# Python REPL is directly used here | |
tool_dictionary = { | |
"ArXiv": arxiv, | |
"Wikipedia": wikipedia, | |
"Python_REPL": python_repl, | |
"Retrieval": st.session_state.retriever_tool if st.session_state.retriever_tool else None | |
} | |
tool_options = ["ArXiv", "Wikipedia", "Python_REPL", "Retrieval"] | |
# Add Search tool dynamically if credentials are valid | |
if st.session_state.bing_subscription_validity: | |
search = BingSearchAPIWrapper() | |
elif st.session_state.google_cse_id_validity: | |
search = GoogleSearchAPIWrapper() | |
else: | |
search = None | |
if search is not None: | |
internet_search = Tool( | |
name="internet_search", | |
description=( | |
"A search engine for comprehensive, accurate, and trusted results. " | |
"Useful for when you need to answer questions about current events. " | |
"Input should be a search query." | |
), | |
func=partial(search.results, num_results=5), | |
args_schema=MySearchToolInput, | |
) | |
tool_options.insert(0, "Search") | |
tool_dictionary["Search"] = internet_search | |
# UI for selecting tools | |
st.write("") | |
st.write("**Tools**") | |
tool_names = st.multiselect( | |
label="assistant tools", | |
options=tool_options, | |
default=st.session_state.tool_names[1], | |
label_visibility="collapsed", | |
) | |
# Instructions if Search tool is unavailable | |
if "Search" not in tool_options: | |
st.write( | |
"<small>Tools are disabled when images are uploaded and queried. " | |
"To search the internet, obtain your Bing Subscription Key " | |
"[here](https://portal.azure.com/) or Google CSE ID " | |
"[here](https://programmablesearchengine.google.com/about/), " | |
"and enter it in the sidebar. Once entered, 'Search' will be displayed " | |
"in the list of tools. Note also that PythonREPL from LangChain is still " | |
"in the experimental phase, so caution is advised.</small>", | |
unsafe_allow_html=True, | |
) | |
else: | |
st.write( | |
"<small>Tools are disabled when images are uploaded and queried. " | |
"Note also that PythonREPL from LangChain is still in the experimental phase, " | |
"so caution is advised.</small>", | |
unsafe_allow_html=True, | |
) | |
# Handle Retrieval tool initialization | |
if "Retrieval" in tool_names: | |
if not st.session_state.retriever_tool: | |
st.info("Creating the vector store and initializing the retriever tool...") | |
get_retriever() | |
if st.session_state.retriever_tool: | |
st.success("Retriever tool is ready for querying.") | |
tool_dictionary["Retrieval"] = st.session_state.retriever_tool | |
else: | |
st.error("Failed to initialize the retriever tool. Please upload the document again.") | |
tool_names.remove("Retrieval") # Prevent broken Retrieval tool | |
# Final tool selection | |
tools = [ | |
tool_dictionary[key] | |
for key in tool_names if tool_dictionary[key] is not None | |
] | |
st.write("**Tools selected in set_tools:**", [tool.name for tool in tools]) | |
st.session_state.tool_names[0] = tool_names | |
return tools | |
def set_prompts(agent_type: Literal["Tool Calling", "ReAct"]) -> None: | |
""" | |
Set chat and agent prompts for two different types of agents: | |
Tool Calling and ReAct. | |
""" | |
if agent_type == "Tool Calling": | |
st.session_state.chat_prompt = ChatPromptTemplate.from_messages([ | |
( | |
"system", | |
f"{st.session_state.ai_role[0]} Your goal is to provide " | |
"answers to human inquiries. Should the information not " | |
"be available, inform the human explicitly that " | |
"the answer could not be found." | |
), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("human", "{input}"), | |
]) | |
st.session_state.agent_prompt = ChatPromptTemplate.from_messages([ | |
( | |
"system", | |
f"{st.session_state.ai_role[0]} Your goal is to provide answers to human inquiries. " | |
"You should specify the source of your answers, whether they are based on internet search " | |
"results ('internet_search'), scientific articles from arxiv.org ('arxiv'), Wikipedia documents ('wikipedia'), " | |
"uploaded documents ('retriever'), or your general knowledge. " | |
"Use the 'retriever' tool to answer questions specifically related to uploaded documents. " | |
"If you cannot find relevant information in the documents using the 'retriever' tool, explicitly inform the user. " | |
"Use Markdown syntax and include relevant sources, such as links (URLs)." | |
), | |
MessagesPlaceholder(variable_name="chat_history", optional=True), | |
("human", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
]) | |
else: | |
st.session_state.chat_prompt = ChatPromptTemplate.from_template( | |
f"{st.session_state.ai_role[0]} " | |
"Your goal is to provide answers to human inquiries. " | |
"Should the information not be available, inform the human " | |
"explicitly that the answer could not be found.\n\n" | |
"{chat_history}\n\nHuman: {input}\n\n" | |
"AI: " | |
) | |
st.session_state.agent_prompt = ChatPromptTemplate.from_template( | |
f"{st.session_state.ai_role[0]} " | |
"Your goal is to provide answers to human inquiries. " | |
"When giving your answers, tell the human what your response " | |
"is based on and which tools you use. Use Markdown syntax " | |
"and include relevant sources, such as links (URLs), following " | |
"MLA format. Should the information not be available, inform " | |
"the human explicitly that the answer could not be found.\n\n" | |
"TOOLS:\n" | |
"------\n\n" | |
"You have access to the following tools:\n\n" | |
"{tools}\n\n" | |
"To use a tool, please use the following format:\n\n" | |
"Thought: Do I need to use a tool? Yes\n" | |
"Action: the action to take, should be one of [{tool_names}]\n" | |
"Action Input: the input to the action\n" | |
"Observation: the result of the action\n\n" | |
"When you have a response to say to the Human, " | |
"or if you do not need to use a tool, you MUST use " | |
"the format:\n\n" | |
"Thought: Do I need to use a tool? No\n" | |
"Final Answer: [your response here]\n\n" | |
"Begin!\n\n" | |
"Previous conversation history:\n\n" | |
"{chat_history}\n\n" | |
"New input: {input}\n" | |
"{agent_scratchpad}" | |
) | |
def print_conversation(no_of_msgs: Union[Literal["All"], int]) -> None: | |
""" | |
Print the conversation stored in st.session_state.history. | |
""" | |
if no_of_msgs == "All": | |
no_of_msgs = len(st.session_state.history) | |
for msg in st.session_state.history[-no_of_msgs:]: | |
if isinstance(msg, HumanMessage): | |
with st.chat_message("human"): | |
st.write(msg.content) | |
else: | |
with st.chat_message("ai"): | |
display_text_with_equations(msg.content) | |
if urls := msg.additional_kwargs.get("image_urls"): | |
for url in urls: | |
st.image(url) | |
# Play TTS | |
if ( | |
st.session_state.model_type == "GPT Models from OpenAI" | |
and st.session_state.audio_response is not None | |
): | |
play_audio(st.session_state.audio_response) | |
st.session_state.audio_response = None | |
def serialize_messages( | |
messages: List[Union[HumanMessage, AIMessage]] | |
) -> List[Dict]: | |
""" | |
Serialize the list of messages into a list of dicts | |
""" | |
return [msg.dict() for msg in messages] | |
def deserialize_messages( | |
serialized_messages: List[Dict] | |
) -> List[Union[HumanMessage, AIMessage]]: | |
""" | |
Deserialize the list of messages from a list of dicts | |
""" | |
deserialized_messages = [] | |
for msg in serialized_messages: | |
if msg['type'] == 'human': | |
deserialized_messages.append(HumanMessage(**msg)) | |
elif msg['type'] == 'ai': | |
deserialized_messages.append(AIMessage(**msg)) | |
return deserialized_messages | |
def show_uploader() -> None: | |
""" | |
Set the flag to show the uploader. | |
""" | |
st.session_state.show_uploader = True | |
def check_conversation_keys(lst: List[Dict[str, Any]]) -> bool: | |
""" | |
Check if all items in the given list are valid conversation entries. | |
""" | |
return all( | |
isinstance(item, dict) and | |
isinstance(item.get("content"), str) and | |
isinstance(item.get("type"), str) and | |
isinstance(item.get("additional_kwargs"), dict) | |
for item in lst | |
) | |
def load_conversation() -> bool: | |
""" | |
Load the conversation from a JSON file | |
""" | |
st.write("") | |
st.write("**Choose a (JSON) conversation file**") | |
uploaded_file = st.file_uploader( | |
label="Load conversation", type="json", label_visibility="collapsed" | |
) | |
if uploaded_file: | |
try: | |
data = json.load(uploaded_file) | |
if isinstance(data, list) and check_conversation_keys(data): | |
st.session_state.history = deserialize_messages(data) | |
return True | |
st.error( | |
f"The uploaded data does not conform to the expected format.", icon="🚨" | |
) | |
except Exception as e: | |
st.error(f"An error occurred: {e}", icon="🚨") | |
return False | |
def create_text(model: str) -> None: | |
""" | |
Take an LLM as input and generate text based on user input | |
by calling run_agent(). | |
""" | |
# initial system prompts | |
general_role = "You are a helpful AI assistant." | |
english_teacher = ( | |
"You are an AI English teacher who analyzes texts and corrects " | |
"any grammatical issues if necessary." | |
) | |
translator = ( | |
"You are an AI translator who translates English into Korean " | |
"and Korean into English." | |
) | |
coding_adviser = ( | |
"You are an AI expert in coding who provides advice on " | |
"good coding styles." | |
) | |
science_assistant = "You are an AI science assistant." | |
roles = ( | |
general_role, english_teacher, translator, | |
coding_adviser, science_assistant | |
) | |
with st.sidebar: | |
st.write("") | |
type_options = ("Tool Calling", "ReAct") | |
st.write("**Agent Type**") | |
st.session_state.agent_type[0] = st.sidebar.radio( | |
label="Agent Type", | |
options=type_options, | |
index=type_options.index(st.session_state.agent_type[1]), | |
label_visibility="collapsed", | |
) | |
agent_type = st.session_state.agent_type[0] | |
if st.session_state.model_type == "GPT Models from OpenAI": | |
st.write("") | |
st.write("**Text to Speech**") | |
st.session_state.tts = st.radio( | |
label="TTS", | |
options=("Enabled", "Disabled", "Auto"), | |
# horizontal=True, | |
index=1, | |
label_visibility="collapsed", | |
) | |
st.write("") | |
st.write("**Temperature**") | |
st.session_state.temperature[0] = st.slider( | |
label="Temperature (higher $\Rightarrow$ more random)", | |
min_value=0.0, | |
max_value=1.0, | |
value=st.session_state.temperature[1], | |
step=0.1, | |
format="%.1f", | |
label_visibility="collapsed", | |
) | |
st.write("") | |
st.write("**Messages to Show**") | |
no_of_msgs = st.radio( | |
label="$\\textsf{Messages to show}$", | |
options=("All", 20, 10), | |
label_visibility="collapsed", | |
horizontal=True, | |
index=2, | |
) | |
st.write("") | |
st.write("##### Message to AI") | |
st.session_state.ai_role[0] = st.selectbox( | |
label="AI's role", | |
options=roles, | |
index=roles.index(st.session_state.ai_role[1]), | |
label_visibility="collapsed", | |
) | |
if st.session_state.ai_role[0] != st.session_state.ai_role[1]: | |
reset_conversation() | |
st.rerun() | |
st.write("") | |
st.write("##### Conversation with AI") | |
# Print conversation | |
print_conversation(no_of_msgs) | |
# Reset, download, or load the conversation | |
c1, c2, c3 = st.columns(3) | |
c1.button( | |
label="$~\:\,\,$Reset$~\:\,\,$", | |
on_click=reset_conversation | |
) | |
c2.download_button( | |
label="Download", | |
data=json.dumps(serialize_messages(st.session_state.history), indent=4), | |
file_name="conversation_with_agent.json", | |
mime="application/json", | |
) | |
c3.button( | |
label="$~~\:\,$Load$~~\:\,$", | |
on_click=show_uploader, | |
) | |
if st.session_state.show_uploader and load_conversation(): | |
st.session_state.show_uploader = False | |
st.rerun() | |
# Set the agent prompts and tools | |
set_prompts(agent_type) | |
tools = set_tools() | |
st.write("**Tools passed to run_agent:**", [tool.name for tool in tools]) | |
image_urls = [] | |
with st.sidebar: | |
image_urls = upload_image_files_return_urls() | |
if st.session_state.model_type == "GPT Models from OpenAI": | |
audio_input = input_from_mic() | |
if audio_input is not None: | |
query = audio_input | |
st.session_state.prompt_exists = True | |
st.session_state.mic_used = True | |
# Use your keyboard | |
text_input = st.chat_input(placeholder="Enter your query") | |
if text_input: | |
query = text_input.strip() | |
st.session_state.prompt_exists = True | |
if st.session_state.prompt_exists: | |
with st.chat_message("human"): | |
st.write(query) | |
with st.chat_message("ai"): | |
generated_text = run_agent( | |
query=query, | |
model=model, | |
tools=tools, | |
image_urls=image_urls, | |
temperature=st.session_state.temperature[0], | |
agent_type=agent_type, | |
) | |
fig = plt.gcf() | |
if fig and fig.get_axes(): | |
generated_image_url = fig_to_base64(fig) | |
st.session_state.history[-1].additional_kwargs["image_urls"] = [ | |
generated_image_url | |
] | |
if ( | |
st.session_state.model_type == "GPT Models from OpenAI" | |
and generated_text is not None | |
): | |
# TTS under two conditions | |
cond1 = st.session_state.tts == "Enabled" | |
cond2 = st.session_state.tts == "Auto" and st.session_state.mic_used | |
if cond1 or cond2: | |
st.session_state.audio_response = perform_tts(generated_text) | |
st.session_state.mic_used = False | |
st.session_state.prompt_exists = False | |
if generated_text is not None: | |
st.session_state.uploader_key += 1 | |
st.rerun() | |
def create_image(model: str) -> None: | |
""" | |
Generate image based on user description by calling openai_create_image(). | |
""" | |
# Set the image size | |
with st.sidebar: | |
st.write("") | |
st.write("**Pixel size**") | |
image_size = st.radio( | |
label="$\\hspace{0.1em}\\texttt{Pixel size}$", | |
options=("1024x1024", "1792x1024", "1024x1792"), | |
# horizontal=True, | |
index=0, | |
label_visibility="collapsed", | |
) | |
st.write("") | |
st.write("##### Description for your image") | |
if st.session_state.image_url is not None: | |
st.info(st.session_state.image_description) | |
st.image(image=st.session_state.image_url, use_column_width=True) | |
# Get an image description using the microphone | |
if st.session_state.model_type == "GPT Models from OpenAI": | |
audio_input = input_from_mic() | |
if audio_input is not None: | |
st.session_state.image_description = audio_input | |
st.session_state.prompt_exists = True | |
# Get an image description using the keyboard | |
text_input = st.chat_input( | |
placeholder="Enter a description for your image", | |
) | |
if text_input: | |
st.session_state.image_description = text_input.strip() | |
st.session_state.prompt_exists = True | |
if st.session_state.prompt_exists: | |
st.session_state.image_url = openai_create_image( | |
st.session_state.image_description, model, image_size | |
) | |
st.session_state.prompt_exists = False | |
if st.session_state.image_url is not None: | |
st.rerun() | |
def create_text_image() -> None: | |
""" | |
Generate text or image by using LLM models like 'gpt-4o'. | |
""" | |
page_title = "LangChain LLM Agent" | |
page_icon = "📚" | |
st.set_page_config( | |
page_title=page_title, | |
page_icon=page_icon, | |
layout="centered" | |
) | |
st.write(f"## {page_icon} $\,${page_title}") | |
# Initialize all the session state variables | |
initialize_session_state_variables() | |
# Define model options directly here | |
model_options = ["gpt-4o-mini", "gpt-4o", "dall-e-3"] | |
# Sidebar content | |
with st.sidebar: | |
st.write("**Select a Model**") | |
model = st.radio( | |
label="Models", | |
options=model_options, | |
index=1, # Default to the second option | |
label_visibility="collapsed", | |
on_change=switch_between_apps, | |
) | |
st.write("---") | |
st.write("xyz", unsafe_allow_html=True) | |
# Main logic for generating text or image | |
if model == "dall-e-3": | |
create_image(model) | |
else: | |
create_text(model) | |
if __name__ == "__main__": | |
create_text_image() |