llmware_test / app.py
DrishtiSharma's picture
Create app.py
ac7d90f verified
raw
history blame
1.74 kB
import streamlit as st
from llmware_module import (
classify_sentiment,
detect_emotions,
generate_tags,
identify_topics,
perform_intent,
get_ratings,
get_category,
perform_ner,
perform_nli,
)
# Streamlit app layout
st.title("Perform NLP Tasks on CPU")
# Text input
text = st.text_area("Enter text here:")
# Analysis tools selection
analysis_tools = st.multiselect(
"Select the analysis tools to use:",
["Sentiment Analysis", "Emotion Detection", "Generate Tags", "Identify Topics",
"Perform Intent", "Get Ratings", "Get Category",
"Perform NER", "Perform NLI"],
["Sentiment Analysis"] # Default selection
)
# Execute analysis and display results
if st.button("Analyze"):
results = {}
if "Sentiment Analysis" in analysis_tools:
results["Sentiment Analysis"] = classify_sentiment(text)
if "Emotion Detection" in analysis_tools:
results["Emotion Detection"] = detect_emotions(text)
if "Generate Tags" in analysis_tools:
results["Generate Tags"] = generate_tags(text)
if "Identify Topics" in analysis_tools:
results["Identify Topics"] = identify_topics(text)
if "Perform Intent" in analysis_tools:
results["Perform Intent"] = perform_intent(text)
if "Get Ratings" in analysis_tools:
results["Get Ratings"] = get_ratings(text)
if "Get Category" in analysis_tools:
results["Get Category"] = get_category(text)
if "Perform NER" in analysis_tools:
results["Perform NER"] = perform_ner(text)
if "Perform NLI" in analysis_tools:
results["Perform NLI"] = perform_nli(text)
for tool, response in results.items():
st.subheader(tool)
st.json(response)