Dricz's picture
Update app.py
5eff273 verified
raw
history blame
4.17 kB
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
model = YOLO('best (1).pt')
model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
name = ['grenade','knife','pistol','rifle']
url_example="https://drive.google.com/file/d/1bBq0bNmJ5X83tDWCzdzHSYCdg-aUL4xO/view?usp=drive_link"
url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
r = requests.get(url_example)
im1 = Image.open(BytesIO(r.content))
url_example="https://drive.google.com/file/d/16Z7QzvZ99fbEPj1sls_jOCJBsC0h_dYZ/view?usp=drive_link"
url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
r = requests.get(url_example)
im2 = Image.open(BytesIO(r.content))
url_example="https://drive.google.com/file/d/13mjTMS3eR0AKYSbV-Fpb3fTBno_T42JN/view?usp=drive_link"
url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
r = requests.get(url_example)
im3 = Image.open(BytesIO(r.content))
url_example="https://drive.google.com/file/d/1-XpFsa_nz506Ul6grKElVJDu_Jl3KZIF/view?usp=drive_link"
url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
r = requests.get(url_example)
im4 = Image.open(BytesIO(r.content))
# for i, r in enumerate(results):
# # Plot results image
# im_bgr = r.plot()
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
def response(image):
print(image)
results = model(image)
text = ""
name_weap = ""
for r in results:
conf = np.array(r.boxes.conf)
cls = np.array(r.boxes.cls)
cls = cls.astype(int)
xywh = np.array(r.boxes.xywh)
xywh = xywh.astype(int)
for con, cl, xy in zip(conf, cls, xywh):
cone = con.astype(float)
conef = round(cone,3)
conef = conef * 100
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
if cl == 0:
name_weap += name[cl] + '\n'
elif cl == 1:
name_weap += name[cl] + '\n'
elif cl == 2:
out = model2(image)
name_weap += out[0]["label"] + '\n'
elif cl == 3:
out = model2(image)
name_weap += out[0]["label"] + '\n'
# im_rgb = Image.fromarray(im_rgb)
return name_weap, text
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
box = results[0].boxes
render = render_result(model=model, image=image, result=results[0], rect_th = 1, text_th = 1)
weapon_name, text_detection = response(image)
# xywh = int(results.boxes.xywh)
# x = xywh[0]
# y = xywh[1]
return render, text_detection, weapon_name
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640,
step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
step=0.05, label="IOU Threshold"),
]
outputs = [gr.Image( type="filepath", label="Output Image"),
gr.Textbox(label="Result"),
gr.Textbox(label="Weapon Name")
]
examples = [[im1, 640, 0.3, 0.6],
[im2, 640, 0.3, 0.6],
[im3, 640, 0.3, 0.6],
[im4, 640, 0.15, 0.6]
]
title = 'Weapon Detection Finetuned'
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'
iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description)
iface.launch()