|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "stabilityai/sdxl-turbo" |
|
|
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): |
|
"""Gera uma imagem a partir do prompt e configurações fornecidas.""" |
|
|
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
try: |
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
except Exception as e: |
|
return f"Erro ao gerar a imagem: {str(e)}", seed |
|
|
|
return image, seed |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# Text-to-Image Gradio Template") |
|
|
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", container=False) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt", visible=False) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0) |
|
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=2) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, seed] |
|
) |
|
|
|
demo.queue().launch() |
|
|