Spaces:
Running
Running
First commit
Browse files- app.py +221 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import supervision as sv
|
7 |
+
from transformers import (
|
8 |
+
RTDetrForObjectDetection,
|
9 |
+
RTDetrImageProcessor,
|
10 |
+
VitPoseConfig,
|
11 |
+
VitPoseForPoseEstimation,
|
12 |
+
VitPoseImageProcessor,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
KEYPOINT_LABEL_MAP = {
|
17 |
+
0: "Nose",
|
18 |
+
1: "L_Eye",
|
19 |
+
2: "R_Eye",
|
20 |
+
3: "L_Ear",
|
21 |
+
4: "R_Ear",
|
22 |
+
5: "L_Shoulder",
|
23 |
+
6: "R_Shoulder",
|
24 |
+
7: "L_Elbow",
|
25 |
+
8: "R_Elbow",
|
26 |
+
9: "L_Wrist",
|
27 |
+
10: "R_Wrist",
|
28 |
+
11: "L_Hip",
|
29 |
+
12: "R_Hip",
|
30 |
+
13: "L_Knee",
|
31 |
+
14: "R_Knee",
|
32 |
+
15: "L_Ankle",
|
33 |
+
16: "R_Ankle",
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
class KeypointDetector:
|
38 |
+
def __init__(self):
|
39 |
+
self.person_detector = None
|
40 |
+
self.person_processor = None
|
41 |
+
self.pose_model = None
|
42 |
+
self.pose_processor = None
|
43 |
+
self.load_models()
|
44 |
+
|
45 |
+
def load_models(self):
|
46 |
+
"""Load all required models"""
|
47 |
+
# Object detection model
|
48 |
+
self.person_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
49 |
+
self.person_detector = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
50 |
+
|
51 |
+
# Pose estimation model
|
52 |
+
self.pose_processor = VitPoseImageProcessor.from_pretrained("nielsr/vitpose-base-simple")
|
53 |
+
self.pose_model = VitPoseForPoseEstimation.from_pretrained("nielsr/vitpose-base-simple")
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def pascal_voc_to_coco(bboxes: np.ndarray) -> np.ndarray:
|
57 |
+
"""Convert Pascal VOC format to COCO format"""
|
58 |
+
bboxes = bboxes.copy() # Create a copy to avoid modifying the input
|
59 |
+
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
|
60 |
+
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
|
61 |
+
return bboxes
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def coco_to_xyxy(bboxes: np.ndarray) -> np.ndarray:
|
65 |
+
"""Convert COCO format (x,y,w,h) to xyxy format (x1,y1,x2,y2)"""
|
66 |
+
bboxes = bboxes.copy()
|
67 |
+
bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
|
68 |
+
bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
|
69 |
+
return bboxes
|
70 |
+
|
71 |
+
def detect_persons(self, image: Image.Image):
|
72 |
+
"""Detect persons in the image"""
|
73 |
+
inputs = self.person_processor(images=image, return_tensors="pt")
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = self.person_detector(**inputs)
|
76 |
+
|
77 |
+
results = self.person_processor.post_process_object_detection(
|
78 |
+
outputs,
|
79 |
+
target_sizes=torch.tensor([(image.height, image.width)]),
|
80 |
+
threshold=0.3
|
81 |
+
)
|
82 |
+
|
83 |
+
# Get boxes and scores for human class (index 0 in COCO dataset)
|
84 |
+
boxes = results[0]["boxes"][results[0]["labels"] == 0]
|
85 |
+
scores = results[0]["scores"][results[0]["labels"] == 0]
|
86 |
+
return boxes.cpu().numpy(), scores.cpu().numpy()
|
87 |
+
|
88 |
+
def detect_keypoints(self, image: Image.Image):
|
89 |
+
"""Detect keypoints in the image"""
|
90 |
+
# Detect persons first
|
91 |
+
boxes, scores = self.detect_persons(image)
|
92 |
+
boxes_coco = [self.pascal_voc_to_coco(boxes)]
|
93 |
+
|
94 |
+
# Detect pose keypoints
|
95 |
+
pixel_values = self.pose_processor(image, boxes=boxes_coco, return_tensors="pt").pixel_values
|
96 |
+
with torch.no_grad():
|
97 |
+
outputs = self.pose_model(pixel_values)
|
98 |
+
|
99 |
+
pose_results = self.pose_processor.post_process_pose_estimation(outputs, boxes=boxes_coco)[0]
|
100 |
+
return pose_results, boxes, scores
|
101 |
+
|
102 |
+
def visualize_detections(self, image: Image.Image, pose_results, boxes, scores):
|
103 |
+
"""Visualize both bounding boxes and keypoints on the image"""
|
104 |
+
# Convert image to numpy array if needed
|
105 |
+
image_array = np.array(image)
|
106 |
+
|
107 |
+
# Setup detections for bounding boxes
|
108 |
+
detections = sv.Detections(
|
109 |
+
xyxy=self.coco_to_xyxy(boxes),
|
110 |
+
confidence=scores,
|
111 |
+
class_id=np.array([0]*len(scores))
|
112 |
+
)
|
113 |
+
|
114 |
+
# Create box annotator
|
115 |
+
box_annotator = sv.BoxAnnotator(
|
116 |
+
color=sv.ColorPalette.DEFAULT,
|
117 |
+
thickness=2
|
118 |
+
)
|
119 |
+
|
120 |
+
# Create edge annotator for keypoints
|
121 |
+
edge_annotator = sv.EdgeAnnotator(
|
122 |
+
color=sv.Color.GREEN,
|
123 |
+
thickness=3
|
124 |
+
)
|
125 |
+
|
126 |
+
# Convert keypoints to supervision format
|
127 |
+
key_points = sv.KeyPoints(
|
128 |
+
xy=torch.cat([pose_result['keypoints'].unsqueeze(0) for pose_result in pose_results]).cpu().numpy()
|
129 |
+
)
|
130 |
+
|
131 |
+
# Annotate image with boxes first
|
132 |
+
annotated_frame = box_annotator.annotate(
|
133 |
+
scene=image_array.copy(),
|
134 |
+
detections=detections
|
135 |
+
)
|
136 |
+
|
137 |
+
# Then add keypoints
|
138 |
+
annotated_frame = edge_annotator.annotate(
|
139 |
+
scene=annotated_frame,
|
140 |
+
key_points=key_points
|
141 |
+
)
|
142 |
+
|
143 |
+
return Image.fromarray(annotated_frame)
|
144 |
+
|
145 |
+
def process_image(self, input_image):
|
146 |
+
"""Process image and return visualization"""
|
147 |
+
if input_image is None:
|
148 |
+
return None, ""
|
149 |
+
|
150 |
+
# Convert to PIL Image if necessary
|
151 |
+
if isinstance(input_image, np.ndarray):
|
152 |
+
image = Image.fromarray(input_image)
|
153 |
+
else:
|
154 |
+
image = input_image
|
155 |
+
|
156 |
+
# Detect keypoints and boxes
|
157 |
+
pose_results, boxes, scores = self.detect_keypoints(image)
|
158 |
+
|
159 |
+
# Visualize results
|
160 |
+
result_image = self.visualize_detections(image, pose_results, boxes, scores)
|
161 |
+
|
162 |
+
# Create detection information text
|
163 |
+
info_text = []
|
164 |
+
|
165 |
+
# Box information
|
166 |
+
for i, (box, score) in enumerate(zip(boxes, scores)):
|
167 |
+
info_text.append(f"\nPerson {i + 1} (confidence: {score:.2f})")
|
168 |
+
info_text.append(f"Bounding Box: x1={box[0]:.1f}, y1={box[1]:.1f}, x2={box[2]:.1f}, y2={box[3]:.1f}")
|
169 |
+
|
170 |
+
# Add keypoint information for this person
|
171 |
+
pose_result = pose_results[i]
|
172 |
+
for j, keypoint in enumerate(pose_result["keypoints"]):
|
173 |
+
x, y, confidence = keypoint
|
174 |
+
info_text.append(f"Keypoint {KEYPOINT_LABEL_MAP[j]}: x={x:.1f}, y={y:.1f}, confidence={confidence:.2f}")
|
175 |
+
|
176 |
+
return result_image, "\n".join(info_text)
|
177 |
+
|
178 |
+
|
179 |
+
def create_gradio_interface():
|
180 |
+
"""Create Gradio interface"""
|
181 |
+
detector = KeypointDetector()
|
182 |
+
|
183 |
+
with gr.Blocks() as interface:
|
184 |
+
gr.Markdown("# Human Detection and Keypoint Estimation using VitPose")
|
185 |
+
gr.Markdown("Upload an image to detect people and their keypoints. The model will:")
|
186 |
+
gr.Markdown("1. Detect people in the image (shown as bounding boxes)")
|
187 |
+
gr.Markdown("2. Identify keypoints for each detected person (shown as connected green lines)")
|
188 |
+
gr.Markdown("Huge shoutout to @NielsRogge and @SangbumChoi for this work!")
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column():
|
192 |
+
input_image = gr.Image(label="Input Image")
|
193 |
+
process_button = gr.Button("Detect People & Keypoints")
|
194 |
+
|
195 |
+
with gr.Column():
|
196 |
+
output_image = gr.Image(label="Detection Results")
|
197 |
+
detection_info = gr.Textbox(
|
198 |
+
label="Detection Information",
|
199 |
+
lines=10,
|
200 |
+
placeholder="Detection details will appear here..."
|
201 |
+
)
|
202 |
+
|
203 |
+
process_button.click(
|
204 |
+
fn=detector.process_image,
|
205 |
+
inputs=input_image,
|
206 |
+
outputs=[output_image, detection_info]
|
207 |
+
)
|
208 |
+
|
209 |
+
gr.Examples(
|
210 |
+
examples=[
|
211 |
+
"http://images.cocodataset.org/val2017/000000000139.jpg"
|
212 |
+
],
|
213 |
+
inputs=input_image
|
214 |
+
)
|
215 |
+
|
216 |
+
return interface
|
217 |
+
|
218 |
+
|
219 |
+
if __name__ == "__main__":
|
220 |
+
interface = create_gradio_interface()
|
221 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/NielsRogge/transformers.git@add_vitpose_autobackbone
|
2 |
+
supervision==0.24.0
|
3 |
+
torch==2.5.1
|
4 |
+
gradio==4.44.1
|