Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """HIFI-GAN""" | |
| import typing as tp | |
| import numpy as np | |
| from scipy.signal import get_window | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import Conv1d | |
| from torch.nn import ConvTranspose1d | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils import weight_norm | |
| from torch.distributions.uniform import Uniform | |
| from torch import sin | |
| from torch.nn.parameter import Parameter | |
| """hifigan based generator implementation. | |
| This code is modified from https://github.com/jik876/hifi-gan | |
| ,https://github.com/kan-bayashi/ParallelWaveGAN and | |
| https://github.com/NVIDIA/BigVGAN | |
| """ | |
| class Snake(nn.Module): | |
| ''' | |
| Implementation of a sine-based periodic activation function | |
| Shape: | |
| - Input: (B, C, T) | |
| - Output: (B, C, T), same shape as the input | |
| Parameters: | |
| - alpha - trainable parameter | |
| References: | |
| - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
| https://arxiv.org/abs/2006.08195 | |
| Examples: | |
| >>> a1 = snake(256) | |
| >>> x = torch.randn(256) | |
| >>> x = a1(x) | |
| ''' | |
| def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): | |
| ''' | |
| Initialization. | |
| INPUT: | |
| - in_features: shape of the input | |
| - alpha: trainable parameter | |
| alpha is initialized to 1 by default, higher values = higher-frequency. | |
| alpha will be trained along with the rest of your model. | |
| ''' | |
| super(Snake, self).__init__() | |
| self.in_features = in_features | |
| # initialize alpha | |
| self.alpha_logscale = alpha_logscale | |
| if self.alpha_logscale: # log scale alphas initialized to zeros | |
| self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
| else: # linear scale alphas initialized to ones | |
| self.alpha = Parameter(torch.ones(in_features) * alpha) | |
| self.alpha.requires_grad = alpha_trainable | |
| self.no_div_by_zero = 0.000000001 | |
| def forward(self, x): | |
| ''' | |
| Forward pass of the function. | |
| Applies the function to the input elementwise. | |
| Snake ∶= x + 1/a * sin^2 (xa) | |
| ''' | |
| alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
| if self.alpha_logscale: | |
| alpha = torch.exp(alpha) | |
| x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
| return x | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size * dilation - dilation) / 2) | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| class ResBlock(torch.nn.Module): | |
| """Residual block module in HiFiGAN/BigVGAN.""" | |
| def __init__( | |
| self, | |
| channels: int = 512, | |
| kernel_size: int = 3, | |
| dilations: tp.List[int] = [1, 3, 5], | |
| ): | |
| super(ResBlock, self).__init__() | |
| self.convs1 = nn.ModuleList() | |
| self.convs2 = nn.ModuleList() | |
| for dilation in dilations: | |
| self.convs1.append( | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation, | |
| padding=get_padding(kernel_size, dilation) | |
| ) | |
| ) | |
| ) | |
| self.convs2.append( | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1) | |
| ) | |
| ) | |
| ) | |
| self.convs1.apply(init_weights) | |
| self.convs2.apply(init_weights) | |
| self.activations1 = nn.ModuleList([ | |
| Snake(channels, alpha_logscale=False) | |
| for _ in range(len(self.convs1)) | |
| ]) | |
| self.activations2 = nn.ModuleList([ | |
| Snake(channels, alpha_logscale=False) | |
| for _ in range(len(self.convs2)) | |
| ]) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| for idx in range(len(self.convs1)): | |
| xt = self.activations1[idx](x) | |
| xt = self.convs1[idx](xt) | |
| xt = self.activations2[idx](xt) | |
| xt = self.convs2[idx](xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for idx in range(len(self.convs1)): | |
| remove_weight_norm(self.convs1[idx]) | |
| remove_weight_norm(self.convs2[idx]) | |
| class SineGen(torch.nn.Module): | |
| """ Definition of sine generator | |
| SineGen(samp_rate, harmonic_num = 0, | |
| sine_amp = 0.1, noise_std = 0.003, | |
| voiced_threshold = 0, | |
| flag_for_pulse=False) | |
| samp_rate: sampling rate in Hz | |
| harmonic_num: number of harmonic overtones (default 0) | |
| sine_amp: amplitude of sine-wavefrom (default 0.1) | |
| noise_std: std of Gaussian noise (default 0.003) | |
| voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
| flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
| Note: when flag_for_pulse is True, the first time step of a voiced | |
| segment is always sin(np.pi) or cos(0) | |
| """ | |
| def __init__(self, samp_rate, harmonic_num=0, | |
| sine_amp=0.1, noise_std=0.003, | |
| voiced_threshold=0): | |
| super(SineGen, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = noise_std | |
| self.harmonic_num = harmonic_num | |
| self.sampling_rate = samp_rate | |
| self.voiced_threshold = voiced_threshold | |
| def _f02uv(self, f0): | |
| # generate uv signal | |
| uv = (f0 > self.voiced_threshold).type(torch.float32) | |
| return uv | |
| def forward(self, f0): | |
| """ | |
| :param f0: [B, 1, sample_len], Hz | |
| :return: [B, 1, sample_len] | |
| """ | |
| F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device) | |
| for i in range(self.harmonic_num + 1): | |
| F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate | |
| theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1) | |
| u_dist = Uniform(low=-np.pi, high=np.pi) | |
| phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device) | |
| phase_vec[:, 0, :] = 0 | |
| # generate sine waveforms | |
| sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec) | |
| # generate uv signal | |
| uv = self._f02uv(f0) | |
| # noise: for unvoiced should be similar to sine_amp | |
| # std = self.sine_amp/3 -> max value ~ self.sine_amp | |
| # . for voiced regions is self.noise_std | |
| noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
| noise = noise_amp * torch.randn_like(sine_waves) | |
| # first: set the unvoiced part to 0 by uv | |
| # then: additive noise | |
| sine_waves = sine_waves * uv + noise | |
| return sine_waves, uv, noise | |
| class SourceModuleHnNSF(torch.nn.Module): | |
| """ SourceModule for hn-nsf | |
| SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0) | |
| sampling_rate: sampling_rate in Hz | |
| harmonic_num: number of harmonic above F0 (default: 0) | |
| sine_amp: amplitude of sine source signal (default: 0.1) | |
| add_noise_std: std of additive Gaussian noise (default: 0.003) | |
| note that amplitude of noise in unvoiced is decided | |
| by sine_amp | |
| voiced_threshold: threhold to set U/V given F0 (default: 0) | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| uv (batchsize, length, 1) | |
| """ | |
| def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| # to produce sine waveforms | |
| self.l_sin_gen = SineGen(sampling_rate, harmonic_num, | |
| sine_amp, add_noise_std, voiced_threshod) | |
| # to merge source harmonics into a single excitation | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x): | |
| """ | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| """ | |
| # source for harmonic branch | |
| with torch.no_grad(): | |
| sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2)) | |
| sine_wavs = sine_wavs.transpose(1, 2) | |
| uv = uv.transpose(1, 2) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| # source for noise branch, in the same shape as uv | |
| noise = torch.randn_like(uv) * self.sine_amp / 3 | |
| return sine_merge, noise, uv | |
| class HiFTGenerator(nn.Module): | |
| """ | |
| HiFTNet Generator: Neural Source Filter + ISTFTNet | |
| https://arxiv.org/abs/2309.09493 | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 80, | |
| base_channels: int = 512, | |
| nb_harmonics: int = 8, | |
| sampling_rate: int = 22050, | |
| nsf_alpha: float = 0.1, | |
| nsf_sigma: float = 0.003, | |
| nsf_voiced_threshold: float = 10, | |
| upsample_rates: tp.List[int] = [8, 8], | |
| upsample_kernel_sizes: tp.List[int] = [16, 16], | |
| istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4}, | |
| resblock_kernel_sizes: tp.List[int] = [3, 7, 11], | |
| resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| source_resblock_kernel_sizes: tp.List[int] = [7, 11], | |
| source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]], | |
| lrelu_slope: float = 0.1, | |
| audio_limit: float = 0.99, | |
| f0_predictor: torch.nn.Module = None, | |
| ): | |
| super(HiFTGenerator, self).__init__() | |
| self.out_channels = 1 | |
| self.nb_harmonics = nb_harmonics | |
| self.sampling_rate = sampling_rate | |
| self.istft_params = istft_params | |
| self.lrelu_slope = lrelu_slope | |
| self.audio_limit = audio_limit | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| self.m_source = SourceModuleHnNSF( | |
| sampling_rate=sampling_rate, | |
| upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], | |
| harmonic_num=nb_harmonics, | |
| sine_amp=nsf_alpha, | |
| add_noise_std=nsf_sigma, | |
| voiced_threshod=nsf_voiced_threshold) | |
| self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"]) | |
| self.conv_pre = weight_norm( | |
| Conv1d(in_channels, base_channels, 7, 1, padding=3) | |
| ) | |
| # Up | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| base_channels // (2**i), | |
| base_channels // (2**(i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| # Down | |
| self.source_downs = nn.ModuleList() | |
| self.source_resblocks = nn.ModuleList() | |
| downsample_rates = [1] + upsample_rates[::-1][:-1] | |
| downsample_cum_rates = np.cumprod(downsample_rates) | |
| for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, | |
| source_resblock_dilation_sizes)): | |
| if u == 1: | |
| self.source_downs.append( | |
| Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1) | |
| ) | |
| else: | |
| self.source_downs.append( | |
| Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2)) | |
| ) | |
| self.source_resblocks.append( | |
| ResBlock(base_channels // (2 ** (i + 1)), k, d) | |
| ) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = base_channels // (2**(i + 1)) | |
| for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
| self.resblocks.append(ResBlock(ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| self.reflection_pad = nn.ReflectionPad1d((1, 0)) | |
| self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32)) | |
| self.f0_predictor = f0_predictor | |
| def _f02source(self, f0: torch.Tensor) -> torch.Tensor: | |
| f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
| har_source, _, _ = self.m_source(f0) | |
| return har_source.transpose(1, 2) | |
| def _stft(self, x): | |
| spec = torch.stft( | |
| x, | |
| self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device), | |
| return_complex=True) | |
| spec = torch.view_as_real(spec) # [B, F, TT, 2] | |
| return spec[..., 0], spec[..., 1] | |
| def _istft(self, magnitude, phase): | |
| magnitude = torch.clip(magnitude, max=1e2) | |
| real = magnitude * torch.cos(phase) | |
| img = magnitude * torch.sin(phase) | |
| inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device)) | |
| return inverse_transform | |
| def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor: | |
| if f0 is None: | |
| f0 = self.f0_predictor(x) | |
| s = self._f02source(f0) | |
| s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
| s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, self.lrelu_slope) | |
| x = self.ups[i](x) | |
| if i == self.num_upsamples - 1: | |
| x = self.reflection_pad(x) | |
| # fusion | |
| si = self.source_downs[i](s_stft) | |
| si = self.source_resblocks[i](si) | |
| x = x + si | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :]) | |
| phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy | |
| x = self._istft(magnitude, phase) | |
| x = torch.clamp(x, -self.audio_limit, self.audio_limit) | |
| return x | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| self.source_module.remove_weight_norm() | |
| for l in self.source_downs: | |
| remove_weight_norm(l) | |
| for l in self.source_resblocks: | |
| l.remove_weight_norm() | |
| def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor: | |
| return self.forward(x=mel, f0=f0) | |