Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import google.generativeai as genai
|
4 |
+
import PyPDF2 as pdf
|
5 |
+
import io
|
6 |
+
import re
|
7 |
+
import streamlit as st
|
8 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
+
import torch
|
12 |
+
|
13 |
+
# Set API key for Google API (Make sure it's securely set in your environment variables)
|
14 |
+
api_key = os.getenv('GOOGLE_API_KEY')
|
15 |
+
if not api_key:
|
16 |
+
raise ValueError("API key not found. Please set GOOGLE_API_KEY in your Hugging Face Space secrets.")
|
17 |
+
|
18 |
+
# Initialize the generative AI model
|
19 |
+
genai.configure(api_key=api_key)
|
20 |
+
|
21 |
+
# Load pre-trained models
|
22 |
+
skill_extractor = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
23 |
+
education_extractor = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple")
|
24 |
+
|
25 |
+
# Define the task and model for Hugging Face
|
26 |
+
task = "sentiment-analysis"
|
27 |
+
model_name = "roberta-base" # Using RoBERTa
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
30 |
+
|
31 |
+
# Extract text from uploaded PDF file
|
32 |
+
def input_pdf_text(uploaded_file):
|
33 |
+
file_stream = io.BytesIO(uploaded_file.read())
|
34 |
+
reader = pdf.PdfReader(file_stream)
|
35 |
+
text = ""
|
36 |
+
for page in reader.pages:
|
37 |
+
text += page.extract_text()
|
38 |
+
return text
|
39 |
+
|
40 |
+
# Extract candidate name directly from the model response
|
41 |
+
def extract_name_from_model_response(response_text):
|
42 |
+
match = re.search(r"Candidate Name:\s*(.*)", response_text)
|
43 |
+
if match:
|
44 |
+
return match.group(1)
|
45 |
+
return "Not Available"
|
46 |
+
|
47 |
+
# Extract email and phone numbers using regex
|
48 |
+
def extract_contact_info(resume_text):
|
49 |
+
email_match = re.search(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", resume_text)
|
50 |
+
email = email_match.group(0) if email_match else "Not Available"
|
51 |
+
|
52 |
+
contact_match = re.search(r"\+?\(?\d{1,3}\)?[-.\s]?\(?\d{1,4}\)?[-.\s]?\d{3}[-.\s]?\d{4}|\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}", resume_text)
|
53 |
+
contact = contact_match.group(0) if contact_match else "Not Available"
|
54 |
+
|
55 |
+
return email, contact
|
56 |
+
|
57 |
+
# Extract skills using NER model
|
58 |
+
def extract_skills(resume_text):
|
59 |
+
ner_results = skill_extractor(resume_text)
|
60 |
+
skills = [entity['word'] for entity in ner_results if entity['entity_group'] == 'SKILL']
|
61 |
+
return ", ".join(skills) if skills else "Not Available"
|
62 |
+
|
63 |
+
# Extract education information using NER model
|
64 |
+
def extract_education(resume_text):
|
65 |
+
ner_results = education_extractor(resume_text)
|
66 |
+
education_entities = [entity['word'] for entity in ner_results if entity['entity_group'] == 'EDUCATION']
|
67 |
+
|
68 |
+
if education_entities:
|
69 |
+
return ", ".join(education_entities)
|
70 |
+
else:
|
71 |
+
edu_patterns = [
|
72 |
+
r"(Bachelor of .+|Master of .+|PhD|BSc|MSc|MBA|B.A|M.A|B.Tech|M.Tech|Doctorate|Engineering|Computer Science|Information Technology|Data Science)",
|
73 |
+
r"(University of [A-Za-z]+.*)"
|
74 |
+
]
|
75 |
+
education = []
|
76 |
+
for pattern in edu_patterns:
|
77 |
+
matches = re.findall(pattern, resume_text)
|
78 |
+
education.extend(matches)
|
79 |
+
|
80 |
+
return ", ".join(education) if education else "Not Available"
|
81 |
+
|
82 |
+
# Extract team leadership and management years from the resume
|
83 |
+
def extract_experience_years(text):
|
84 |
+
years = 0
|
85 |
+
patterns = [
|
86 |
+
r"(\d{4})\s?[-to]+\s?(\d{4})", # From year to year
|
87 |
+
r"(\d+) years", # Exact mention of years
|
88 |
+
r"since (\d{4})", # Mentions "since"
|
89 |
+
r"(\d+)\s?[\-–]\s?(\d+)", # Handles year ranges with hyphens (e.g., 2015-2020)
|
90 |
+
r"(\d+)\s?[\–]\s?present", # Present with range (e.g., 2019–present)
|
91 |
+
]
|
92 |
+
|
93 |
+
for pattern in patterns:
|
94 |
+
matches = re.findall(pattern, text)
|
95 |
+
for match in matches:
|
96 |
+
if len(match) == 2:
|
97 |
+
start_year = int(match[0])
|
98 |
+
end_year = int(match[1])
|
99 |
+
years += end_year - start_year
|
100 |
+
elif len(match) == 1:
|
101 |
+
years += int(match[0])
|
102 |
+
|
103 |
+
return years
|
104 |
+
|
105 |
+
# Calculate the match percentage using TF-IDF and cosine similarity
|
106 |
+
def calculate_match_percentage(resume_text, job_description):
|
107 |
+
documents = [resume_text, job_description]
|
108 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
109 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
|
110 |
+
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
111 |
+
match_percentage = cosine_sim[0][0] * 100
|
112 |
+
return round(match_percentage, 2)
|
113 |
+
|
114 |
+
# Generate the detailed analysis from the Gemini model
|
115 |
+
def get_gemini_response(input_text, job_description):
|
116 |
+
prompt = f"""
|
117 |
+
Act as an Applicant Tracking System. Analyze the resume with respect to the job description.
|
118 |
+
Candidate Details: {input_text}
|
119 |
+
Job Description: {job_description}
|
120 |
+
Please extract the following:
|
121 |
+
1. Candidate Name
|
122 |
+
2. Relevant Skills
|
123 |
+
3. Educational Background
|
124 |
+
4. Direct Team Leadership Experience (in years)
|
125 |
+
5. Direct Management Experience (in years)
|
126 |
+
6. Match percentage with the job description
|
127 |
+
7. Provide a resume summary in 5 bullet points highlighting the candidate's qualifications.
|
128 |
+
"""
|
129 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
130 |
+
response = model.generate_content(prompt)
|
131 |
+
return response.text.strip()
|
132 |
+
|
133 |
+
# Extract a detailed resume summary (focusing on leadership roles and team management experience)
|
134 |
+
def extract_leadership_summary(response_text):
|
135 |
+
leadership_summary = "Resume Summary: Leadership and Team Management Experience (in years)\n"
|
136 |
+
lines = response_text.strip().split("\n")
|
137 |
+
meaningful_lines = [line.strip() for line in lines if line.strip()]
|
138 |
+
leadership_experience = []
|
139 |
+
|
140 |
+
for line in meaningful_lines:
|
141 |
+
if "leadership" in line.lower() or "management" in line.lower() or "team" in line.lower():
|
142 |
+
leadership_experience.append(line)
|
143 |
+
|
144 |
+
leadership_experience = leadership_experience[-5:] if len(leadership_experience) >= 5 else leadership_experience
|
145 |
+
|
146 |
+
for idx, bullet in enumerate(leadership_experience, 1):
|
147 |
+
leadership_summary += f"{idx}. {bullet}\n"
|
148 |
+
|
149 |
+
return leadership_summary
|
150 |
+
|
151 |
+
# Analyze the resume using Hugging Face RoBERTa
|
152 |
+
def analyze_resume(resume_text):
|
153 |
+
# Create input prompts for different aspects
|
154 |
+
prompts = [
|
155 |
+
f"This resume shows strong managerial responsibilities: {resume_text}",
|
156 |
+
f"This resume demonstrates excellent leadership skills: {resume_text}",
|
157 |
+
f"This resume indicates significant work experience: {resume_text}",
|
158 |
+
f"This resume indicates at least 2 years of relevant experience: {resume_text}"
|
159 |
+
]
|
160 |
+
|
161 |
+
results = []
|
162 |
+
for prompt in prompts:
|
163 |
+
# Tokenize the prompt with truncation
|
164 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
165 |
+
outputs = model(**inputs)
|
166 |
+
predicted_class = torch.argmax(outputs.logits).item()
|
167 |
+
results.append(predicted_class)
|
168 |
+
|
169 |
+
# Interpret the results
|
170 |
+
analysis = {
|
171 |
+
"managerial_responsibilities": results[0] == 1, # Assuming 1 is positive sentiment
|
172 |
+
"leadership_skills": results[1] == 1,
|
173 |
+
"work_experience": results[2] == 1,
|
174 |
+
"relevant_experience": results[3] == 1
|
175 |
+
}
|
176 |
+
|
177 |
+
# Check if all criteria are met
|
178 |
+
is_suitable = all(analysis.values())
|
179 |
+
|
180 |
+
return analysis, is_suitable
|
181 |
+
|
182 |
+
# Streamlit interface to upload files and provide job description
|
183 |
+
st.title("Resume ATS Analysis Tool")
|
184 |
+
st.markdown("### Upload Resume and Job Description for Analysis")
|
185 |
+
|
186 |
+
# File uploader for resume PDF
|
187 |
+
uploaded_file = st.file_uploader("Upload Resume PDF", type=["pdf"])
|
188 |
+
|
189 |
+
# Job description text input
|
190 |
+
job_description = st.text_area("Job Description", height=200)
|
191 |
+
|
192 |
+
if uploaded_file and job_description:
|
193 |
+
analyze_button = st.button("Analyze")
|
194 |
+
|
195 |
+
if analyze_button:
|
196 |
+
resume_text = input_pdf_text(uploaded_file)
|
197 |
+
response_text = get_gemini_response(resume_text, job_description)
|
198 |
+
|
199 |
+
# Initialize an empty dictionary to hold the dynamic data
|
200 |
+
data = {}
|
201 |
+
|
202 |
+
# Extract candidate name
|
203 |
+
name = extract_name_from_model_response(response_text)
|
204 |
+
data['Candidate_Name'] = name if name != "Not Available" else "Not Available"
|
205 |
+
|
206 |
+
# Extract contact info (email, phone)
|
207 |
+
email, contact = extract_contact_info(resume_text)
|
208 |
+
data['Email'] = email if email != "Not Available" else "Not Available"
|
209 |
+
data['Contact'] = contact if contact != "Not Available" else "Not Available"
|
210 |
+
|
211 |
+
# Extract skills
|
212 |
+
skills = extract_skills(resume_text)
|
213 |
+
data['Skills'] = skills if skills != "Not Available" else "Not Available"
|
214 |
+
|
215 |
+
# Extract education
|
216 |
+
education = extract_education(resume_text)
|
217 |
+
data['Education'] = education if education != "Not Available" else "Not Available"
|
218 |
+
|
219 |
+
# Extract team leadership and management experience
|
220 |
+
team_leadership_years = extract_experience_years(resume_text)
|
221 |
+
data['Team_Leadership_Experience (Years)'] = team_leadership_years
|
222 |
+
management_experience_years = extract_experience_years(resume_text)
|
223 |
+
data['Management_Experience (Years)'] = management_experience_years
|
224 |
+
|
225 |
+
# Calculate match percentage dynamically
|
226 |
+
match_percentage = calculate_match_percentage(resume_text, job_description)
|
227 |
+
data['Match_Percentage'] = match_percentage
|
228 |
+
|
229 |
+
# Calculate Job Description Match Score dynamically (based on match percentage)
|
230 |
+
if match_percentage >= 80:
|
231 |
+
job_description_match_score = "High"
|
232 |
+
elif match_percentage >= 60:
|
233 |
+
job_description_match_score = "Medium"
|
234 |
+
else:
|
235 |
+
job_description_match_score = "Low"
|
236 |
+
data['Job_Description_Match_Score'] = job_description_match_score
|
237 |
+
|
238 |
+
# Extract leadership and team management summary
|
239 |
+
leadership_summary = extract_leadership_summary(response_text)
|
240 |
+
data['Leadership_and_Team_Management_Summary'] = leadership_summary
|
241 |
+
|
242 |
+
# Analyze the resume using Hugging Face RoBERTa
|
243 |
+
analysis, is_suitable = analyze_resume(resume_text)
|
244 |
+
data['Managerial_Responsibilities'] = analysis['managerial_responsibilities']
|
245 |
+
data['Leadership_Skills'] = analysis['leadership_skills']
|
246 |
+
data['Work_Experience'] = analysis['work_experience']
|
247 |
+
data['Relevant_Experience'] = analysis['relevant_experience']
|
248 |
+
data['Suitable_for_Role'] = is_suitable
|
249 |
+
|
250 |
+
# Display the results as a table
|
251 |
+
df = pd.DataFrame([data])
|
252 |
+
st.write(df)
|
253 |
+
|
254 |
+
# Download the results as a CSV file
|
255 |
+
csv = df.to_csv(index=False)
|
256 |
+
st.download_button(
|
257 |
+
label="Download Results as CSV",
|
258 |
+
data=csv,
|
259 |
+
file_name='resume_analysis_results.csv',
|
260 |
+
mime='text/csv'
|
261 |
+
)
|
262 |
+
|
263 |
+
else:
|
264 |
+
st.write("Please upload a resume and provide a job description to analyze.")
|