Spaces:
Sleeping
Sleeping
DreamStream-1
commited on
Commit
•
3a9f7f8
1
Parent(s):
92726fe
Update app.py
Browse files
app.py
CHANGED
@@ -1,172 +1,162 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import google.generativeai as genai
|
4 |
-
import PyPDF2
|
5 |
import io
|
6 |
import re
|
7 |
import streamlit as st
|
8 |
-
from transformers import
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
|
12 |
-
#
|
13 |
api_key = os.getenv("GOOGLE_API_KEY")
|
14 |
if not api_key:
|
15 |
st.error("API key not found. Please set GOOGLE_API_KEY in your environment variables.")
|
16 |
st.stop()
|
17 |
|
18 |
-
# Initialize Google Generative AI
|
19 |
genai.configure(api_key=api_key)
|
20 |
|
21 |
-
#
|
22 |
def generate_response(prompt, model="text-bison-001", max_output_tokens=256):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
-
# Use the correct method for generating text (may vary based on API update)
|
25 |
response = genai.chat(
|
26 |
model=model,
|
27 |
messages=[{"role": "user", "content": prompt}],
|
28 |
-
temperature=0.7,
|
29 |
max_output_tokens=max_output_tokens
|
30 |
)
|
31 |
-
return response.result['content']
|
32 |
except Exception as e:
|
33 |
return f"Error generating text: {str(e)}"
|
34 |
|
35 |
-
#
|
36 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
try:
|
38 |
-
|
39 |
-
|
40 |
-
text = ""
|
41 |
-
for page in reader.pages:
|
42 |
-
text += page.extract_text()
|
43 |
return text.strip()
|
44 |
except Exception as e:
|
45 |
st.error(f"Error extracting text from PDF: {str(e)}")
|
46 |
return ""
|
47 |
|
48 |
-
# Extract
|
49 |
-
def extract_contact_info(
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
return email,
|
|
|
60 |
|
61 |
-
#
|
62 |
def extract_management_experience(text):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
r"(\d+)\s?(years|yrs|year)\s?of\s?(management|leadership)",
|
68 |
-
r"(\d+)\s?(years|yrs|year)\s?experience\s?(managing|leading)"
|
69 |
-
r"led\s?(\d+)\s?teams",
|
70 |
-
r"(\d+)\s?team\s?(members|leaders)"
|
71 |
]
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
for keyword in management_keywords:
|
76 |
-
if keyword.lower() in text.lower():
|
77 |
-
leadership_experience.append(keyword)
|
78 |
-
|
79 |
-
for pattern in leadership_patterns:
|
80 |
-
matches = re.findall(pattern, text)
|
81 |
-
for match in matches:
|
82 |
-
if len(match) == 2 and match[0].isdigit():
|
83 |
-
management_years += int(match[0])
|
84 |
-
elif len(match) == 1 and match[0].isdigit():
|
85 |
-
management_years += int(match[0])
|
86 |
|
87 |
-
|
88 |
-
return management_years, management_experience
|
89 |
|
90 |
-
#
|
91 |
def calculate_match_percentage(resume_text, job_description):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
except Exception:
|
99 |
-
return 0.0
|
100 |
|
101 |
-
|
102 |
-
|
|
|
103 |
try:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
Extract details:
|
109 |
-
- Name
|
110 |
-
- Skills
|
111 |
-
- Education
|
112 |
-
- Management and Team Leadership Experience (years)
|
113 |
-
- Match percentage
|
114 |
-
"""
|
115 |
-
return generate_response(prompt)
|
116 |
except Exception as e:
|
117 |
-
st.error(f"Error
|
118 |
-
return
|
119 |
|
120 |
-
# Streamlit
|
121 |
-
st.title("Resume
|
122 |
-
st.markdown("### Upload
|
123 |
|
124 |
uploaded_file = st.file_uploader("Upload Resume PDF", type=["pdf"])
|
125 |
-
job_description = st.text_area("Job Description
|
126 |
|
127 |
if uploaded_file and job_description.strip():
|
128 |
-
if
|
129 |
-
|
130 |
-
st.stop()
|
131 |
-
|
132 |
-
analyze_button = st.button("Analyze")
|
133 |
-
if analyze_button:
|
134 |
-
resume_text = input_pdf_text(uploaded_file)
|
135 |
-
|
136 |
if not resume_text:
|
137 |
-
st.error("
|
138 |
st.stop()
|
139 |
|
140 |
-
|
141 |
-
management_years,
|
142 |
-
|
143 |
-
# Generate analysis
|
144 |
-
gemini_response = get_gemini_response(resume_text, job_description)
|
145 |
-
|
146 |
-
# Extract data and calculate metrics
|
147 |
-
email, contact = extract_contact_info(resume_text)
|
148 |
match_percentage = calculate_match_percentage(resume_text, job_description)
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
results = {
|
152 |
"Email": email,
|
153 |
-
"Contact":
|
154 |
"Management Experience (Years)": management_years,
|
155 |
-
"
|
156 |
"Match Percentage": match_percentage,
|
157 |
-
"
|
158 |
}
|
159 |
|
160 |
-
# Display results
|
161 |
st.write(pd.DataFrame([results]))
|
162 |
-
|
163 |
-
# Enable CSV download
|
164 |
csv = pd.DataFrame([results]).to_csv(index=False)
|
165 |
-
st.download_button(
|
166 |
-
label="Download Results as CSV",
|
167 |
-
data=csv,
|
168 |
-
file_name="resume_analysis_results.csv",
|
169 |
-
mime="text/csv"
|
170 |
-
)
|
171 |
else:
|
172 |
-
st.
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import google.generativeai as genai
|
4 |
+
import PyPDF2
|
5 |
import io
|
6 |
import re
|
7 |
import streamlit as st
|
8 |
+
from transformers import pipeline
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
|
12 |
+
# Configure API Key
|
13 |
api_key = os.getenv("GOOGLE_API_KEY")
|
14 |
if not api_key:
|
15 |
st.error("API key not found. Please set GOOGLE_API_KEY in your environment variables.")
|
16 |
st.stop()
|
17 |
|
|
|
18 |
genai.configure(api_key=api_key)
|
19 |
|
20 |
+
# Text Generation Function
|
21 |
def generate_response(prompt, model="text-bison-001", max_output_tokens=256):
|
22 |
+
"""
|
23 |
+
Generate text response using Google Generative AI.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
prompt (str): Input prompt for AI.
|
27 |
+
model (str): Model to use for generation.
|
28 |
+
max_output_tokens (int): Maximum token limit.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
str: Generated text or error message.
|
32 |
+
"""
|
33 |
try:
|
|
|
34 |
response = genai.chat(
|
35 |
model=model,
|
36 |
messages=[{"role": "user", "content": prompt}],
|
37 |
+
temperature=0.7,
|
38 |
max_output_tokens=max_output_tokens
|
39 |
)
|
40 |
+
return response.result['content']
|
41 |
except Exception as e:
|
42 |
return f"Error generating text: {str(e)}"
|
43 |
|
44 |
+
# PDF Text Extraction
|
45 |
+
def extract_text_from_pdf(file):
|
46 |
+
"""
|
47 |
+
Extract text from uploaded PDF.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
file (UploadedFile): PDF file uploaded via Streamlit.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
str: Extracted text or error message.
|
54 |
+
"""
|
55 |
try:
|
56 |
+
reader = PyPDF2.PdfReader(io.BytesIO(file.read()))
|
57 |
+
text = ''.join(page.extract_text() for page in reader.pages)
|
|
|
|
|
|
|
58 |
return text.strip()
|
59 |
except Exception as e:
|
60 |
st.error(f"Error extracting text from PDF: {str(e)}")
|
61 |
return ""
|
62 |
|
63 |
+
# Extract Contact Information
|
64 |
+
def extract_contact_info(text):
|
65 |
+
"""
|
66 |
+
Extract email and phone number from text using regex.
|
67 |
|
68 |
+
Args:
|
69 |
+
text (str): Input text.
|
70 |
|
71 |
+
Returns:
|
72 |
+
tuple: Extracted email and phone number or "Not Available".
|
73 |
+
"""
|
74 |
+
email = re.search(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", text)
|
75 |
+
phone = re.search(r"\+?[\d\s().-]{7,15}", text)
|
76 |
|
77 |
+
return (email.group(0) if email else "Not Available",
|
78 |
+
phone.group(0) if phone else "Not Available")
|
79 |
|
80 |
+
# Management Experience Extraction
|
81 |
def extract_management_experience(text):
|
82 |
+
"""
|
83 |
+
Extract management and leadership keywords and years.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
text (str): Input resume text.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
tuple: Total years of experience and matching keywords.
|
90 |
+
"""
|
91 |
+
keywords = ["manager", "team lead", "director", "executive", "supervisor", "leadership", "head"]
|
92 |
+
patterns = [
|
93 |
r"(\d+)\s?(years|yrs|year)\s?of\s?(management|leadership)",
|
94 |
+
r"(\d+)\s?(years|yrs|year)\s?experience\s?(managing|leading)"
|
|
|
|
|
95 |
]
|
96 |
|
97 |
+
found_keywords = [kw for kw in keywords if kw in text.lower()]
|
98 |
+
years = sum(int(match[0]) for pattern in patterns for match in re.findall(pattern, text))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
return years, ", ".join(found_keywords) if found_keywords else "Not Available"
|
|
|
101 |
|
102 |
+
# TF-IDF Match Percentage
|
103 |
def calculate_match_percentage(resume_text, job_description):
|
104 |
+
"""
|
105 |
+
Calculate similarity between resume and job description using TF-IDF.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
resume_text (str): Resume content.
|
109 |
+
job_description (str): Job description.
|
|
|
|
|
110 |
|
111 |
+
Returns:
|
112 |
+
float: Match percentage (0-100).
|
113 |
+
"""
|
114 |
try:
|
115 |
+
vectorizer = TfidfVectorizer(stop_words='english')
|
116 |
+
tfidf_matrix = vectorizer.fit_transform([resume_text, job_description])
|
117 |
+
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
118 |
+
return round(cosine_sim[0][0] * 100, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
+
st.error(f"Error calculating match percentage: {str(e)}")
|
121 |
+
return 0.0
|
122 |
|
123 |
+
# Streamlit Interface
|
124 |
+
st.title("Resume Analysis Tool: Management & Leadership Focus")
|
125 |
+
st.markdown("### Upload Resume PDF and Enter Job Description")
|
126 |
|
127 |
uploaded_file = st.file_uploader("Upload Resume PDF", type=["pdf"])
|
128 |
+
job_description = st.text_area("Job Description", height=200)
|
129 |
|
130 |
if uploaded_file and job_description.strip():
|
131 |
+
if st.button("Analyze"):
|
132 |
+
resume_text = extract_text_from_pdf(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
if not resume_text:
|
134 |
+
st.error("Failed to extract text from PDF. Ensure the file is valid.")
|
135 |
st.stop()
|
136 |
|
137 |
+
email, phone = extract_contact_info(resume_text)
|
138 |
+
management_years, management_keywords = extract_management_experience(resume_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
match_percentage = calculate_match_percentage(resume_text, job_description)
|
140 |
|
141 |
+
prompt = f"""
|
142 |
+
Analyze the resume with respect to the job description.
|
143 |
+
Resume Text: {resume_text}
|
144 |
+
Job Description: {job_description}
|
145 |
+
Include: Name, Skills, Education, Experience, and Match Percentage.
|
146 |
+
"""
|
147 |
+
gemini_response = generate_response(prompt)
|
148 |
+
|
149 |
results = {
|
150 |
"Email": email,
|
151 |
+
"Contact": phone,
|
152 |
"Management Experience (Years)": management_years,
|
153 |
+
"Keywords": management_keywords,
|
154 |
"Match Percentage": match_percentage,
|
155 |
+
"AI Summary": gemini_response
|
156 |
}
|
157 |
|
|
|
158 |
st.write(pd.DataFrame([results]))
|
|
|
|
|
159 |
csv = pd.DataFrame([results]).to_csv(index=False)
|
160 |
+
st.download_button("Download Results", data=csv, file_name="resume_analysis.csv", mime="text/csv")
|
|
|
|
|
|
|
|
|
|
|
161 |
else:
|
162 |
+
st.info("Upload a resume and provide a job description to begin analysis.")
|